R. H. Whittaker, A study of summer foliage insect communities in the Great Smoky Mountains, Ecol. Monographs, vol.22, pp.1-44, 1952.

R. H. Whittaker, Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monographs, vol.30, pp.279-338, 1960.

M. V. Lomolino, Elevation gradients of species-density: historical and prospective views, Glob. Ecol. Biogeogr, vol.10, pp.3-13, 2001.

J. A. Bryant, Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity, PNAS, vol.105, pp.11505-11511, 2008.

N. Fierer, Microbes do not follow the elevational patterns of plants and animals, Ecol, vol.92, issue.4, pp.797-804, 2011.

J. Wang, Regional and global elevational patterns of microbial species richness and evenness, Ecography, vol.40, pp.393-402, 2017.

C. A. Lozupone and R. Knight, Global patterns in bacterial diversity, PNAS, vol.104, issue.27, pp.11436-11440, 2007.

D. Singh, K. Takahashi, M. Kim, J. Chun, and J. M. Adams, A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb. Ecol, vol.63, pp.429-437, 2012.

D. Singh, K. Takahashi, J. Park, and J. M. Adams, Similarities and Contrasts in the Archaeal Community of Two Japanese Mountains: Mt, Norikura Compared to Mt. Fuji. Microb. Ecol, vol.71, pp.428-441, 2015.

Y. Zhang, Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China Microb. Biotechnol, vol.8, issue.4, pp.739-746, 2015.

C. Shen, Contrasting elevational diversity patterns between eukaryotic soil microbes and plants, Ecol, vol.95, issue.11, pp.3190-3202, 2014.

C. Shen, Y. Ni, L. Wenju, J. Wang, and H. Chu, Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra, Front. Microbiol, vol.6, p.582, 2015.

C. Shen, Dramatic increase of soil microbial functional gene diversity at the treeline ecotone of Changbai mountain, Front. Microbiol, vol.7, p.1184, 2016.

L. Tedersoo, Global diversity and geography of soil fungi, Science, vol.346, p.1256688, 2014.

K. R. Freeman, Evidence that chytrids dominate fungal communities in high-elevation soils, PNAS, vol.106, pp.18315-18320, 2009.

J. P. Gai, Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient, Pedobiologia, vol.55, pp.145-151, 2012.

M. Gómez-hernández, G. Williams-linera, R. Guevara, and D. J. Lodge, Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse, Biodivers. Conserv, vol.21, p.2247, 2012.

Y. Miyamoto, T. Nakano, M. Hattori, and K. Nara, The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan. ISME J, vol.8, pp.1739-1746, 2014.

L. Liu, Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland, FEMS Microbiol. Ecol, vol.91, issue.7, p.78, 2015.

J. Geml, L. N. Morgado, T. A. Semenova-nelsen, and M. Schilthuizen, Changes in richness and community composition of ectomycorrhizal fungi among altitudinal vegetation types on Mount Kinabalu in Borneo, New Phytol, vol.215, pp.454-468, 2017.

E. H. Rapoport and . Areografía, EstrategiasGeográficas de las Especies, p.215, 1975.

E. H. Rapoport and . Areography, Geographical Strategies of Species. Trad. B. Drausal, p.286, 1982.

G. C. Stevens, The latitudinal gradient in geographical range: how so many species coexist in the tropics, Am. Nat, vol.133, pp.240-256, 1989.

G. C. Stevens, The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude, Am. Nat, vol.140, pp.893-911, 1992.

N. J. Sanders, Elevational gradients in ant species richness: area, geometry, and Rapoport's rule, Ecography, vol.25, pp.25-32, 2002.

C. M. Mccain and K. B. Knight, Elevational Rapoport's rule is not pervasive on mountains, Glob. Ecol. Biogeogr, vol.22, pp.750-759, 2013.

Q. Guo, Global variation in elevational diversity patterns, p.3007, 2013.

G. Lear, Following Rapoport's rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes, Environ. Microbiol, vol.19, issue.8, pp.3152-3162, 2017.

C. M. Mccain, Global analysis of bird elevational diversity, Glob. Ecol. Biogeogr, vol.18, pp.346-360, 2009.

C. M. Mccain, Vertebrate range sizes indicate that mountains may be 'higher' in the tropics, Ecol. Lett, vol.12, pp.550-560, 2009.

C. M. Mccain, Global analysis of reptile elevational diversity, Glob. Ecol. Biogeogr, vol.19, pp.541-553, 2010.

K. Dong, Soil nematode show a mid-elevation diversity maximum and elevation zonation on Mt, Norikura, Japan. Sci. Rep, vol.7, p.3028, 2017.

M. Ohsawa, Differentiation of Vegetation Zones and Species Strategies in the Subalpine Region of, Mt. Fuji. Vegetatio, vol.57, issue.1, pp.15-52, 1985.

K. Takahashi, H. Azuma, and K. Yasue, Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on mountain Norikura, central Japan, Ecol. Res, vol.18, issue.5, pp.549-558, 2003.

K. R. Bhattarai and O. R. Vetaas, Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity Distrib, vol.12, issue.4, pp.373-378, 2006.

L. Tedersoo, T. May, and M. Smith, Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages, Mycorrhiza, vol.20, pp.217-263, 2010.

L. Tang, T. Li, D. Li, and X. Meng, Elevational patterns of plant richness in the Taibai Mountain, China. Sci World J, vol.2014, 2014.

N. M. Veter, Is Rapoport's rule a recent phenomenon? A deep time perspective on potential causal mechanisms, Biol. Lett, vol.9, p.20130398, 2013.

R. K. Colwell and D. C. Lees, The mid-domain effects: geometric constraints on the geography of species richness, Trends in Ecology and Evolution, vol.15, pp.70-76, 2000.

R. K. Colwell, C. Rahbek, and N. J. Gotelli, The mid-domain effect and species richness patterns: what we have learnt so far?, The American Naturalist, vol.163, issue.3, 2004.

F. Cox, K. K. Newsham, R. Bl, J. A. Dungait, and C. H. Rinson, Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic, Ecol. Lett, vol.19, issue.5, pp.528-536, 2016.

N. Yamamoto, Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air, ISME J, vol.6, issue.10, pp.1801-1811, 2012.

R. P. Phillips, E. Brzostek, and M. G. Midgley, The mycorrhizal-associated nutrient economy: a new framework for predicting carbonnutrient couplings in temperate forests, New Phytologist, vol.199, pp.41-51, 2013.

J. Jabiol, Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system, Journal of Animal Ecology, vol.82, pp.1042-1051, 2013.

A. A. Kudrin, S. M. Tsurikov, and A. V. Tiunov, Trophic position of microbivorous and predatory soil nematode in a boreal forest as indicated by stable isotope analysis, Soil Biology and Biochemistry, vol.86, pp.193-200, 2015.

D. Liu, G. Liu, L. Chen, J. Wang, and L. Zhang, Soil pH determines fungal diversity along an elevation gradient in Southwestern China, Sci. China Life Sci, p.61, 2018.

K. Kumada, O. Sato, Y. Ohsumi, and S. Ohta, Humus composition of mountain soils in central Japan with special reference to the P type humic acid, Soil Sci. Plant Nutri, vol.13, issue.5, pp.151-158, 1961.

H. Obara, Y. Maejima, K. Kohyama, T. Ohkura, and Y. Takata, Outline of the comprehensive soil classification system of Japan-first approximation, JARQ, vol.49, issue.3, pp.217-226, 2015.

M. Op-de-beeck, Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies, plos one, vol.9, p.97629, 2014.

A. M. Comeau, G. M. Douglas, and M. G. Langille, Microbiome Helper: a custom and streamlined workflow for microbiome research, vol.2, pp.127-143, 2017.

P. D. Schloss, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol, vol.75, issue.23, pp.7537-7541, 2009.

S. P. Brown, Scraping the bottom of the barrel: are rare high throughput sequences artifacts?, Fungal Ecol, vol.13, pp.221-225, 2015.

K. Abarenkov, The UNITE database for molecular identification of fungi -recent updates and future perspectives, New Phytol, vol.186, pp.281-285, 2010.

R. Development-core and . Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2008.

R. Kolde, Package 'pheatmap' pretty heatmap, 2018.

J. Oksanen and . Package-'vegan, Community ecology package. CRAN, 2018.

Ø. Hammer, D. A. Harper, and P. D. Ryan, PAST: PAleontologicalSTatistics software package for education and data analysis, Palaeontol. Electronica, vol.4, issue.1, p.9, 2001.

M. J. Anderson, Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist, Ecol. Lett, vol.14, pp.19-28, 2011.

M. A. Rodríguez-gironés and L. A. Santamaría, A new algorithm to calculate the nestedness temperature of presence-absence matrices, J. Biogeogr, vol.33, pp.924-935, 2006.

N. H. Nguyen, FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild, Fungal Ecol, vol.20, pp.241-248, 2016.

R. K. Colwell, Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints, Ecol. Lett, vol.19, issue.9, pp.1009-1022, 2016.