A. Aftab, S. Saleem, Z. Iqbal, G. Jan, M. A. Faisal et al., Interaction of Rhizobium and Pseudomonas with wheat (Triticum aestivum L.) in potted soil with or without P2O5, J. Plant Nutr, vol.37, pp.2144-2156, 2014.

Y. Bashan, M. E. Puente, M. N. Rodriguez-mendoza, G. Toledo, G. Holguin et al., Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types, Appl. Environ. Microbiol, vol.61, pp.1938-1945, 1995.

A. Becquer, J. Trap, U. Irshad, M. A. Arif, and C. Plassard, From soil to plant, the outward journey of P through trophic relationships and ectomycorrhizal association, Front. Plant Sci, vol.5, p.548, 2014.

B. C. Behera, S. K. Sing-dev-sachan, R. R. Mishra, S. K. Dutta, and H. N. Thatoi, Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in mangrove-A review, Biocatal. Agric. Biotechnol, vol.3, pp.97-110, 2014.

F. Bergkemper, S. Kublik, F. Lang, J. Kruger, G. Vestergaard et al., Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil, J. Microbiol. Methods, vol.125, pp.91-97, 2016.

M. Bonkowski, C. Villenave, and B. Griffiths, Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots, Plant Soil, vol.321, pp.213-233, 2009.

N. C. Brady and R. R. Weil, The Nature and Properties of Soils, 14th Edn, 2008.

R. R. Braz and E. Nahas, Synergistic action of both Aspergillus niger and Burkholderia cepacea in co-culture increases phosphate solubilization in growth medium, FEMS Microbiol. Lett, vol.332, pp.84-90, 2012.

D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. Ver-loren-van-themaat, and P. Schulzelefert, Structure and functions of the bacterial microbiota of plants, Annu. Rev. Plant Biol, vol.64, pp.807-838, 2013.

X. Chen, M. Liu, F. Hu, X. Mao, L. et al., Contributions of soil microfauna (protozoa and nematodes) to rhizosphere ecological functions, Acta Ecol. Sin, vol.27, pp.3132-3143, 2007.

Y. Cheng, Y. Jiang, Y. Wu, T. A. Valentine, L. et al., Soil nitrogen status modifies rice root response to nematode-bacteria interactions in the rhizosphere, PLoS One, vol.11, p.148021, 2016.

M. T. Gebremikael, H. Steel, D. Buchan, W. Bert, and S. De-neve, Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions, Sci. Rep, vol.6, p.32862, 2016.

B. Gugi, N. Orange, F. Hellio, J. F. Burini, C. Guillou et al., Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens, J. Bacteriol, vol.173, pp.3814-3820, 1991.

P. Gyaneshwar, G. N. Kumar, L. J. Parekh, and P. S. Poole, Role of soil microorganisms in improving P nutrition of plants, Plant Soil, vol.245, pp.83-93, 2002.

W. Hayat, H. Aman, U. Irshad, M. Azeem, A. Iqbal et al., Analysis of ecological attributes of bacterial phosphorus solubilizers, native to pine forests of Lower Himalaya, Appl. Soil Ecol, vol.112, pp.51-59, 2017.

P. Illmer and F. Schinner, Solubilization of inorganic phosphates by microorganisms isolated from forest soil, Soil Biol. Biochem, vol.24, pp.90199-90207, 1992.

U. Irshad, C. Villenave, A. Brauman, S. A. Khan, S. Shafiq et al., Nitrogen and phosphorus flow stimulated by bacterial grazer nematodes in mycorrhizosphere of Pinus pinaster, Int. J. Agric. Biol, vol.15, pp.1265-1271, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00956034

U. Irshad, C. Villenave, A. Brauman, and C. Plassard, Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings, Soil Biol. Biochem, vol.43, pp.2121-2126, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01506069

U. Irshad, C. Villenave, A. Brauman, and C. Plassard, Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster, Plant Soil, vol.321, pp.213-233, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267974

Y. Jiang, M. Liu, J. Zhang, Y. Chen, X. Chen et al., Nematode grazing promotes bacterial community dynamics in soil at the aggregate level, ISME J, vol.11, pp.2705-2711, 2017.

K. S. Khan and R. G. Joergensen, Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers, Bioresour. Technol, vol.100, pp.303-309, 2009.

J. Lemanowicz, Phosphatases activity and plant available phosphorus in soil under winter wheat (Triticum aestivum L.) fertilized minerally, Pol. J. Agron, vol.4, pp.12-15, 2011.

P. Marschner, D. Crowley, and Z. Rengel, Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods, Soil Biol. Biochem, vol.43, pp.883-894, 2011.

C. S. Nautiyal, An efficient microbiological growth medium for screening phosphate solubilizing microorganisms, FEMS Microbiol. Lett, vol.170, pp.265-270, 1999.

R. Nazir, W. Hayat, P. Rehman, A. Iqbal, and U. Irshad, Novel P-solubilizers from calcium bound phosphate rich pine forest of Lower Himalaya, Geomicrobiol. J, vol.34, pp.119-129, 2017.

T. Ohno and L. Zibilske, Determination of low concentrations of phosphorus in soil extracts using malachite green, Soil Sci. Soc. Am, vol.55, pp.892-895, 1991.

K. Parani and B. K. Saha, Prospects of using phosphate solubilizing Pseudomonas as biofertilizer, Eur. J. Biol. Sci, vol.4, pp.40-44, 2012.

K. Prasad, A. Aggarwal, K. Yadav, and A. Tanwar, Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L, J. Soil Sci. Plant Nutr, vol.12, pp.451-462, 2012.

H. Rodriguez and R. Fraga, Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnol. Adv, vol.17, pp.14-16, 1999.

K. Rosenberg, J. Bertaux, K. Krome, A. Hartmann, S. Scheu et al., Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana, ISME J, vol.3, pp.675-684, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445284

M. Saleem, I. Fetzer, H. Harms, and A. Chatzinotas, Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal, Proc. R. Soc. B Biol. Sci, vol.283, 2016.

G. Selvakumar, P. Joshi, S. Nazim, P. K. Mishra, J. K. Bisht et al., Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984): a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere, Biologia, vol.64, pp.239-245, 2009.

P. Singh, V. Kumar, A. , and S. , Evaluation of phytase producing bacteria for their plant growth promoting activities, Int. J. Microbiol, p.426483, 2014.

I. M. Van-aarle and C. Plassard, Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related to soil type, Soil Biol. Biochem, vol.42, pp.324-330, 2010.

C. Villenave, K. Ekschmitt, S. Nazaret, and T. Bongers, Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web, Soil Biol. Biochem, vol.36, pp.2033-2043, 2004.

H. R. Zabihi, G. R. Savaghebi, and K. Khavazi, Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions, Acta Physiol. Plant, vol.33, pp.145-152, 2011.

F. A. Zakry, M. S. Halimi, K. B. Abdul, H. A. Osumanu, S. K. Wong et al., Isolation and plant growth-promoting properties of rhizobacterial diazotrophs from pepper vine, Piper nigrum L.). Malays. Appl. Biol, vol.39, pp.41-45, 2010.

Z. Zhang, X. Zhang, M. Xu, S. Zhang, S. Huang et al., Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system, Appl. Soil Ecol, vol.98, pp.56-64, 2016.