F. Hassiotou and D. Geddes, Anatomy of the human mammary gland: current status of knowledge, Clin. Anat, vol.26, issue.1, pp.29-48, 2013.

M. Sopel, The myoepithelial cell: its role in normal mammary glands and breast cancer, Folia Morphol. (Warsz), vol.69, issue.1, pp.1-14, 2010.

M. J. Warburton, D. Mitchell, E. J. Ormerod, and P. Rudland, Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland, J. Histochem. Cytochem, vol.30, issue.7, pp.667-676, 1982.

S. R. Dickson and M. J. Warburton, Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland, J. Histochem. Cytochem, vol.40, issue.5, pp.697-703, 1992.

L. A. Rudolph-owen and L. M. Matrisian, Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland, J. Mammary Gland Biol. Neoplasia, vol.3, issue.2, pp.177-189, 1998.

S. K. Runswick, . O'hare, . Mj, L. Jones, C. H. Streuli et al., Desmosomal adhesion regulates epithelial morphogenesis and cell positioning, Nat. Cell. Biol, vol.3, issue.9, pp.823-830, 2001.

C. H. Streuli, C. Schmidhauser, and N. Bailey, Laminin mediates tissue-specific gene expression in mammary epithelia, J. Cell Biol, vol.129, issue.3, pp.591-603, 1995.

I. Plante and D. W. Laird, Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia, Dev. Biol, vol.318, issue.2, pp.312-322, 2008.

E. S. Radisky and D. C. Radisky, Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer, J. Mammary Gland Biol. Neoplasia, vol.15, issue.2, pp.201-212, 2010.

T. Gudjonsson, L. Ronnov-jessen, R. Villadsen, F. Rank, M. J. Bissell et al., Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition, J. Cell Sci, vol.115, pp.39-50, 2002.

M. C. Adriance, J. L. Inman, O. W. Petersen, and M. J. Bissell, Myoepithelial cells: good fences make good neighbors, Breast Cancer Res, vol.7, issue.5, pp.190-197, 2005.

?. , Highlights the importance of the bidirectional crosstalk between luminal and myoepithelial cells for proper differentiation and polarization of the breast epithelium

T. Gudjonsson, M. C. Adriance, M. D. Sternlicht, O. W. Petersen, and M. J. Bissell, Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia, J. Mammary Gland Biol. Neoplasia, vol.10, issue.3, pp.261-272, 2005.

R. S. Talhouk, R. Mroue, and M. Mokalled, Heterocellular interaction enhances recruitment of ? and ?-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells, Exp. Cell Res, vol.314, issue.18, pp.3275-3291, 2008.

, ? Demonstrates that heterocellular interactions are present between luminal and myoepithelial cells, and that they play a role in differention of the luminal cells

Y. Su, K. Shankar, O. Rahal, and R. C. Simmen, Bidirectional signaling of mammary epithelium and stroma: implications for breast cancerpreventive actions of dietary factors, J. Nutr. Biochem, vol.22, issue.7, pp.605-611, 2011.

C. P. Leblond and S. Inoue, Structure, composition, and assembly of basement membrane, Am. J. Anat, vol.185, issue.4, pp.367-390, 1989.

B. Weigelt, C. M. Ghajar, and M. J. Bissell, The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer, Adv. Drug Deliv. Rev. 69, vol.70, pp.42-51, 2014.

M. J. Bissell, H. G. Hall, and G. Parry, How does the extracellular matrix direct gene expression?, J. Theor. Biol, vol.99, issue.1, pp.31-68, 1982.

K. Kratochwil, Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse, Dev. Biol, vol.20, issue.1, pp.46-71, 1969.

J. Howlin, J. Mcbryan, and F. Martin, Pubertal mammary gland development: insights from mouse models, J. Mammary Gland Biol. Neoplasia, vol.11, issue.3-4, pp.283-297, 2006.

M. I. Gallego, N. Binart, and G. W. Robinson, Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects, Dev. Biol, vol.229, issue.1, pp.163-175, 2001.

J. F. Wiesen, P. Young, Z. Werb, and G. R. Cunha, Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development, Development, vol.126, issue.2, pp.335-344, 1999.

. Research-article-weber-ouellette,

S. Mallepell, A. Krust, P. Chambon, and C. Brisken, Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland, Proc. Natl Acad. Sci. USA, vol.103, issue.7, pp.2196-2201, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188034

R. C. Humphreys, J. Lydon, O. Bw, and J. M. Rosen, Mammary gland development is mediated by both stromal and epithelial progesterone receptors, Mol. Endocrinol, vol.11, issue.6, pp.801-811, 1997.

C. M. Ghajar and M. J. Bissell, Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging, Histochem. Cell Biol, vol.130, issue.6, pp.1105-1118, 2008.

P. J. Keely, J. E. Wu, and S. A. Santoro, The spatial and temporal expression of the ? 2 ? 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis, Differentiation, vol.59, issue.1, pp.1-13, 1995.

M. W. Tibbitt and K. S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng, vol.103, issue.4, pp.655-663, 2009.

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol, vol.21, issue.12, pp.745-754, 2011.

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors, Assay Drug Dev. Technol, vol.12, issue.4, pp.207-218, 2014.

K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer, Exp. Cell Res, vol.319, issue.1, pp.75-87, 2013.

K. M. Mabry, S. Z. Payne, and K. S. Anseth, Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype, Biomaterials, vol.74, pp.31-41, 2016.

E. T. Pineda, R. M. Nerem, and T. Ahsan, Differentiation patterns of embryonic stem cells in two-versus three-dimensional culture, Cells Tissues Organs, vol.197, issue.5, pp.399-410, 2013.

A. Birgersdotter, R. Sandberg, and I. Ernberg, Gene expression perturbation in vitro -a growing case for three-dimensional (3D) culture systems, Semin. Cancer Biol, vol.15, issue.5, pp.405-412, 2005.

P. A. Kenny, G. Y. Lee, and C. A. Myers, The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression, Mol. Oncol, vol.1, issue.1, pp.84-96, 2007.

J. Debnath, S. K. Muthuswamy, and J. S. Brugge, Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures, Methods, vol.30, issue.3, pp.256-268, 2003.

S. Marchese and E. Silva, Disruption of 3D MCF-12A breast cell cultures by estrogens -an in vitro model for ER-mediated changes indicative of hormonal carcinogenesis, PLoS ONE, vol.7, issue.10, p.45767, 2012.

G. Y. Lee, P. A. Kenny, E. H. Lee, and M. J. Bissell, Three-dimensional culture models of normal and malignant breast epithelial cells, Nat. Methods, vol.4, issue.4, pp.359-365, 2007.

D. Radisky, C. Hagios, and M. J. Bissell, Tumors are unique organs defined by abnormal signaling and context, Semin. Cancer Biol, vol.11, issue.2, pp.87-95, 2001.

X. Wang, L. Sun, M. V. Maffini, A. Soto, C. Sonnenschein et al., A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function, Biomaterials, vol.31, issue.14, pp.3920-3929, 2010.

C. E. Nash, G. Mavria, and E. W. Baxter, Development and characterisation of a 3D multi-cellular in vitro model of normal human breast: a tool for cancer initiation studies, Oncotarget, vol.6, issue.15, pp.13731-13741, 2015.

J. J. Campbell and C. J. Watson, Three-dimensional culture models of mammary gland, Organogenesis, vol.5, issue.2, pp.43-49, 2009.

P. Desprez, C. Roskelley, J. Campisi, and M. Bissell, Isolation of functional cell lines from a mouse mammary epithelial cell strain: the importance of basement membrane and cell-cell interaction, Mol. Cell. Differ, vol.1, pp.99-110, 1993.

S. H. Barsky and N. J. Karlin, Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression, J. Mammary Gland Biol. Neoplasia, vol.10, issue.3, pp.249-260, 2005.

M. D. Sternlicht, P. Kedeshian, Z. M. Shao, S. Safarians, and S. H. Barsky, The human myoepithelial cell is a natural tumor suppressor, Clin. Cancer Res, vol.3, issue.11, pp.1949-1958, 1997.

B. Weigelt and M. J. Bissell, Unraveling the microenvironmental influences on the normal mammary gland and breast cancer, Semin. Cancer Biol, vol.18, issue.5, pp.311-321, 2008.

?. Good, review on the different models available to study breast development and breast cancer

M. Anders, R. Hansen, R. X. Ding, K. A. Rauen, M. J. Bissell et al., Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor, Proc. Natl Acad. Sci. USA, vol.100, issue.4, pp.1943-1948, 2003.

S. Krause, M. V. Maffini, A. M. Soto, and C. Sonnenschein, A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland, Tissue Eng. Part C Methods, vol.14, issue.3, pp.261-271, 2008.

E. P. Carter, J. A. Gopsill, J. J. Gomm, J. L. Jones, and R. P. Grose, A 3D in vitro model of the human breast duct: a method to unravel myoepithelial-luminal interactions in the progression of breast cancer, Breast Cancer Res, vol.19, issue.1, p.50, 2017.

?. , Reports the formation of bilayered acini using isolated populations of luminal and myoepithelial cells from human specimens, and their use in inducing ductal carcinoma in situ

J. J. Campbell, N. Davidenko, M. M. Caffarel, R. E. Cameron, and C. J. Watson, A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology, PLoS ONE, vol.6, issue.9, p.25661, 2011.

M. M. Ip and K. M. Darcy, Three-dimensional mammary primary culture model systems, J. Mammary Gland Biol. Neoplasia, vol.1, issue.1, pp.91-110, 1996.

G. Kaur and J. M. Dufour, Cell lines: valuable tools or useless artifacts, Spermatogenesis, vol.2, issue.1, pp.1-5, 2012.

M. A. Deugnier, E. P. Moiseyeva, J. P. Thiery, and M. Glukhova, Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype, Dev. Dyn, vol.204, issue.2, pp.107-117, 1995.

M. P. Foschini and V. Eusebi, Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature, Virchows Arch, vol.432, issue.4, pp.303-310, 1998.

D. Lazard, X. Sastre, M. G. Frid, M. A. Glukhova, J. P. Thiery et al., Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue, Proc. Natl Acad. Sci USA, vol.90, issue.3, pp.999-1003, 1993.

E. Y. Lee, W. H. Lee, C. S. Kaetzel, G. Parry, and M. J. Bissell, Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion, Proc. Natl Acad. Sci. USA, vol.82, issue.5, pp.1419-1423, 1985.

M. H. Barcellos-hoff, J. Aggeler, T. G. Ram, and M. J. Bissell, Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane, Development, vol.105, issue.2, pp.223-235, 1989.

M. J. Bissell, A. Rizki, and I. S. Mian, Tissue architecture: the ultimate regulator of breast epithelial function, Curr. Opin. Cell Biol, vol.15, issue.6, pp.753-762, 2003.