H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, Advances in leishmaniasis, Lancet, vol.366, issue.9496, p.16257344, 2005.

D. Sacks and S. Kamhawi, Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis, Annu Rev Microbiol, vol.55, issue.1, p.11544364, 2001.

M. A. Gómez, I. Contreras, M. Halle, M. L. Tremblay, R. W. Mcmaster et al., Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases, Sci Signal, vol.2, issue.90, 2009.

M. Jaramillo, M. A. Gó-mez, O. Larsson, M. T. Shio, I. Topisirovic et al., Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection, Cell Host Microbe, vol.9, issue.4, p.21501832, 2011.

N. Moradin and A. Descoteaux, Leishmania promastigotes: building a safe niche within macrophages, Front Cell Infect Microbiol, vol.2, p.3445913, 2012.

D. Matheoud, N. Moradin, A. Bellemare-pelletier, M. T. Shio, W. J. Hong et al., Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8, Cell Host Microbe, vol.14, issue.1, p.23870310, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01131970

A. Duque, G. Fukuda, M. Turco, S. J. Stäger, S. Descoteaux et al., Leishmania Promastigotes Induce Cytokine Secretion in Macrophages through the Degradation of Synaptotagmin XI, J Immunol, vol.193, issue.5, p.25063865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178774

I. Contreras, M. A. Gó-mez, O. Nguyen, M. T. Shio, R. W. Mcmaster et al., Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63

, PLoS Pathog, vol.6, issue.10, p.2954837, 2010.

J. Ghosh, M. Bose, S. Roy, and S. N. Bhattacharyya, Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection, Cell Host Microbe, vol.13, issue.3, p.3605572, 2013.

J. K. Verma, R. Rastogi, and A. Mukhopadhyay, Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494, PLoS Pathog, vol.13, issue.6, p.5501680, 2017.

M. Olivier, V. D. Atayde, A. Isnard, K. Hassani, and M. T. Shio, Leishmania virulence factors: focus on the metalloprotease GP63, Microbes Infect, vol.14, issue.15, pp.1377-89, 2012.

A. Descoteaux and S. J. Turco, Glycoconjugates in Leishmania infectivity, Biochim Biophys Acta, vol.1455, issue.2-3, p.10571023, 1999.

V. D. Atayde, K. Hassani, S. L. Da, A. Filho, A. R. Borges et al., Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions, Cellular immunology, vol.309, p.27499212, 2016.

C. Matte and A. Descoteaux, Exploitation of the Host Cell Membrane Fusion Machinery by Leishmania Is Part of the Infection Process, PLoS Pathog, vol.12, issue.12, p.5145244, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01421184

J. F. Dermine, G. Goyette, M. Houde, S. J. Turco, and M. Desjardins, Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages, Cell Microbiol, vol.7, issue.9, p.16098214, 2005.

M. E. Winberg, A. Holm, E. Särndahl, A. F. Vinet, A. Descoteaux et al., Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts, Microbes Infect, vol.11, issue.2, pp.215-237, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00819626

M. Desjardins and A. Descoteaux, Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan, J Exp Med, vol.185, issue.12, p.2196352, 1997.

A. F. Vinet, M. Fukuda, S. J. Turco, and A. Descoteaux, The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V, PLoS Pathog, vol.5, issue.10, p.2757729, 2009.

R. Lodge, T. O. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cell Microbiol, vol.8, issue.12, p.16848789, 2006.

E. Medina-acosta, R. E. Karess, H. Schwartz, and D. G. Russell, The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage, Mol Biochem Parasitol, vol.37, issue.2, p.2691889, 1989.

M. J. Mcconville and J. M. Blackwell, Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids, J Biol Chem, vol.266, issue.23, pp.15170-15179, 1991.

D. L. Tolson, S. J. Turco, and T. W. Pearson, Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani, Infect Immun, vol.58, issue.11, p.313689, 1990.

G. F. Spä-th, L. A. Garraway, S. J. Turco, and S. M. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proc Natl Acad Sci U S A, vol.100, issue.16, p.12869694, 2003.

A. Isnard, M. T. Shio, and M. Olivier, Impact of Leishmania metalloprotease GP63 on macrophage signaling. Frontiers in cellular and infection microbiology, vol.2, p.3417651, 2012.

M. Hakimi, P. Olias, and L. D. Sibley, Toxoplasma Effectors Targeting Host Signaling and Transcription, Clin Microbiol Rev, vol.30, issue.3, p.28404792, 2017.

M. M. Weber and R. Faris, Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins, Front Cell Dev Biol, vol.6, issue.1, p.29417046, 2018.

A. Vanessa, D. Aslan, H. Townsend, S. Hassani, K. Kamhawi et al., Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut, Cell Reports, vol.13, issue.5, p.26565909, 2015.

J. M. Silverman and N. E. Reiner, Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection, Frontiers in cellular and infection microbiology, vol.1, p.3417360, 2012.

B. Ndjamen, B. H. Kang, K. Hatsuzawa, and P. E. Kima, Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; parasitophorous vacuoles are hybrid compartments, Epub 2010/05/26, vol.12, p.2974788, 2010.

B. Foth, A. Piani, J. M. Curtis, T. Ilg, M. Mcconville et al., Leishmania major proteophosphoglycans exist as membrane-bound and soluble forms and localise to the cell membrane, the flagellar pocket and the lysosome, Int J Parasitol, vol.32, issue.14, p.12464416, 2002.

J. M. Silverman, J. Clos, C. C. De'oliveira, O. Shirvani, Y. Fang et al., An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages, J Cell Sci, vol.123, issue.6, p.20159964, 2010.

E. Barak, S. Amin-spector, E. Gerliak, S. Goyard, N. Holland et al., Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response, Mol Biochem Parasit, vol.141, issue.1, p.15811531, 2005.

K. Hassani, E. Antoniak, A. Jardim, and M. Olivier, Temperature-Induced Protein Secretion by Leishmania mexicana Modulates Macrophage Signalling and Function, PloS one, vol.6, issue.5, p.21559274, 2011.

L. Ge, D. Melville, M. Zhang, and R. Schekman, The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis, eLife, vol.2, p.23930225, 2013.

T. Aoki, M. Kojima, K. Tani, and M. Tagaya, Sec22b-dependent assembly of endoplasmic reticulum Q-SNARE proteins, Biochem J, vol.410, issue.1, pp.93-100, 2008.

A. L. Ackerman, A. Giodini, and P. Cresswell, A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells, Immunity, vol.25, issue.4, p.17027300, 2006.

C. L. Jackson and J. E. Casanova, Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors, Trends Cell Biol, vol.10, issue.2, p.10652516, 2000.

Y. Misumi, Y. Misumi, K. Miki, A. Takatsuki, G. Tamura et al., Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes, J Biol Chem, vol.261, issue.24, p.2426273, 1986.

I. Cebrian, G. Visentin, N. Blanchard, M. Jouve, A. Bobard et al., Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells, Cell, vol.147, issue.6, p.22153078, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666062

A. Alloatti, D. C. Rookhuizen, L. Joannas, J. M. Carpier, S. Iborra et al., Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity, J Exp Med, vol.214, issue.8, p.5551575, 2017.

E. Cocucci and J. Meldolesi, Ectosomes and exosomes: shedding the confusion between extracellular vesicles, Trends Cell Biol, vol.25, issue.6, p.25683921, 2015.

E. Gagnon, S. Duclos, C. Rondeau, E. Chevet, P. H. Cameron et al., Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages, Cell, vol.110, issue.1, p.12151002, 2002.

O. P. Joffre, E. Segura, A. Savina, and S. Amigorena, Cross-presentation by dendritic cells, Nat Rev Immunol, vol.12, p.22790179, 2012.

P. De-magistris and A. W. , The Dynamic Nature of the Nuclear Envelope, Current Biology, vol.28, issue.8, p.29689232, 2018.

K. Arasaki and C. R. Roy, Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b, Traffic, vol.11, issue.5, p.3164831, 2010.

J. C. Kagan, M. Stein, M. Pypaert, and C. R. Roy, Legionella Subvert the Functions of Rab1 and Sec22b to Create a Replicative Organelle, J Exp Med, vol.199, issue.9, p.15117975, 2004.

R. De-carvalho, W. A. Andrade, D. S. Lima-junior, M. Dilucca, C. V. De-oliveira et al., Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome, Cell Reports, vol.26, issue.2, p.30625325, 2019.

S. Cohen, A. M. Valm, and J. Lippincott-schwartz, Interacting organelles, Curr Opin Cell Biol, vol.53, p.30006038, 2018.

M. J. Phillips and G. K. Voeltz, Structure and function of ER membrane contact sites with other organelles, Nature reviews Molecular cell biology, vol.17, pp.69-82, 2015.

M. Fukuda and K. Mikoshiba, A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain. Implications for distinct functions of the two isoforms, J Biol Chem, vol.274, issue.44, p.10531344, 1999.

D. L. Tolson, S. J. Turco, R. P. Beecroft, and T. W. Pearson, The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies, Mol Biochem Parasitol, vol.35, issue.2, p.2475775, 1989.

L. L. Button, G. Wilson, C. R. Astell, and W. R. Mcmaster, Recombinant Leishmania surface glycoprotein GP63 is secreted in the baculovirus expression system as a latent metalloproteinase, Gene, vol.134, issue.1, p.8244034, 1993.

M. H. Macdonald, C. J. Morrison, and W. R. Mcmaster, Analysis of the active site and activation mechanism of the Leishmania surface metalloproteinase GP63, Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, vol.1253, issue.2, pp.155-160, 1995.

B. S. Mcgwire, K. Chang, H. Posttranslational-;-leishmania, ;. Metalloprotease, Z. Catalytic et al., J Biol Chem, vol.271, issue.gp63, p.8626468, 1996.

A. Descoteaux and G. Matlashewski, c-fos and tumor necrosis factor gene expression in Leishmania donovani-infected macrophages, Mol Cell Biol, vol.9, issue.11, p.363676, 1989.

D. Ranatunga, C. M. Hedrich, F. Wang, D. W. Mcvicar, N. Nowak et al., A human IL10 BAC transgene reveals tissue-specific control of IL-10 expression and alters disease outcome, Proc Natl Acad Sci USA, vol.106, issue.40, pp.17123-17131, 2009.

A. Hammami, T. Charpentier, M. Smans, and S. Stäger, IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF-1? and Impairing Dendritic Cell Functions during Leishmania Infection
URL : https://hal.archives-ouvertes.fr/pasteur-01352161

, PLoS Pathog, vol.11, issue.6, p.26046638, 2015.

B. M. Abidin, A. Hammami, S. Stäger, and K. M. Heinonen, Infection-adapted emergency hematopoiesis promotes visceral leishmaniasis, PLoS Pathog, vol.13, issue.8, p.28787450, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01574565

A. Descoteaux, L. A. Garraway, K. A. Ryan, L. K. Garrity, S. J. Turco et al., Identification of genes by functional complementation in protozoan parasite Leishmania, Molecular Genetics (Molecular Microbiology Techniques, vol.3, pp.22-48, 1994.

C. Privé and A. Descoteaux, Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages, Eur J Immunol, vol.30, issue.8, p.10940915, 2000.

G. F. Spä-th and S. M. Beverley, A Lipophosphoglycan-Independent Method for Isolation of Infective Leishmania Metacyclic Promastigotes by Density Gradient Centrifugation, Exp Parasitol, vol.99, issue.2, p.11748963, 2001.

A. Duque, G. Fukuda, M. Descoteaux, and A. , Synaptotagmin XI Regulates Phagocytosis and Cytokine Secretion in Macrophages, J Immunol, vol.190, issue.4, p.23303671, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01128567

A. F. Vinet, M. Fukuda, and A. Descoteaux, The exocytosis regulator synaptotagmin V controls phagocytosis in macrophages, J Immunol, vol.181, issue.8, p.18832684, 2008.

D. M. Russo, S. J. Turco, J. M. Burns, and S. G. Reed, Stimulation of human T lymphocytes by Leishmania lipophosphoglycan-associated proteins, J Immunol, vol.148, issue.1, pp.202-209, 1992.

V. Lavastre, H. Cavalli, C. Ratthe, and D. Girard, Anti-inflammatory effect of Viscum album agglutinin-I (VAA-I): induction of apoptosis in activated neutrophils and inhibition of lipopolysaccharide-induced neutrophilic inflammation in vivo, Clin Exp Immunol, vol.137, issue.2, p.15270843, 2004.

K. Hassani, M. T. Shio, C. Martel, D. Faubert, and M. Olivier, Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes, PloS one, vol.9, issue.4, p.24736445, 2014.

A. Pilar, K. P. Madrid, and A. Jardim, Interaction of Leishmania PTS2 receptor peroxin 7 with the glycosomal protein import machinery, Mol Biochem Parasitol, vol.158, issue.1, p.18178267, 2008.

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop et al., Icy: an open bioimage informatics platform for extended reproducible research, Nature Methods, vol.9, p.22743774, 2012.