I. Becker, N. Salaiza, M. Aguirre, J. Delgado, N. Carrillo-carrasco et al., Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol, Biochem. Parasitol, vol.130, pp.65-74, 2003.

V. S. Boaventura, C. S. Santos, C. R. Cardoso, J. De-andrade, W. L. Santos et al., Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines, Eur. J. Immunol, vol.40, pp.2830-2836, 2010.

A. Brittingham and D. Mosser, Exploitation of the complement system by Leishmania promastigotes, Parasitol. Today, vol.12, pp.444-447, 1996.

L. Castellucci, E. Menezes, J. Oliveira, A. Magalhaes, L. H. Guimaraes et al., IL6-174 G/C promoter polymorphism influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil, J. Infect. Dis, vol.194, pp.519-527, 2006.

J. M. Coelho-finamore, V. C. Freitas, R. R. Assis, M. N. Melo, N. Novozhilova et al., Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts, Int. J. Parasitol, vol.41, pp.333-342, 2011.

M. F. Costa-silva, L. I. Gomes, O. A. Martins-filho, R. Rodrigues-silva, J. Freire et al., Gene expression profile of cytokines and chemokines in skin lesions from Brazilian Indians with localized cutaneous leishmaniasis, Mol. Immunol, vol.57, pp.74-85, 2014.

R. R. De-assis, I. C. Ibraim, P. M. Nogueira, R. P. Soares, and S. J. Turco, Glycoconjugates in new world species of leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts, Biochim. Biophys. Acta Gen. Subj, vol.1820, pp.1354-1365, 2012.

A. De-carvalho-vivarini, R. D. Pereira, K. L. Dias-teixeira, T. C. Calegarisilva, M. Bellio et al., Human cutaneous leishmaniasis: interferon-dependent expression of double-stranded RNA-dependent protein kinase (PKR) via TLR2, FASEB J, vol.25, pp.4162-4173, 2011.

M. J. De-veer, J. M. Curtis, T. M. Baldwin, J. A. Didonato, A. Sexton et al., MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling, Eur. J. Immunol, vol.33, pp.2822-2831, 2003.

M. Desjardins and A. Descoteaux, Inhibition of phagolysosomal biogenesis by the leishmania lipophosphoglycan, J. Exp. Med, vol.185, pp.2061-2068, 1997.

D. E. Dobson, B. J. Mengeling, S. Cilmi, S. Hickerson, S. J. Turco et al., Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of Leishmania major, J. Biol. Chem, vol.278, pp.28840-28848, 2003.

G. Feng, H. S. Goodridge, M. M. Harnett, X. Wei, A. V. Nikolaev et al., Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macr, J. Immunol, vol.163, pp.6403-6412, 1999.

C. Gabriel, W. R. Mcmaster, D. Girard, and A. Descoteaux, Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps, J Immunol, vol.185, pp.4319-4327, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00819577

R. T. Gazzinelli, C. Ropert, and M. A. Campos, Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites, Immunol Rev, vol.201, pp.9-25, 2004.

L. H. Guimarães, P. R. Machado, E. L. Lago, D. J. Morgan, A. Schriefer et al., Atypical manifestations of tegumentary leishmaniasis in a transmission area of Leishmania braziliensis in the state of Bahia, Brazil, Trans. R. Soc. Trop. Med. Hyg, vol.103, pp.712-715, 2009.

L. H. Guimarães, A. Queiroz, J. A. Silva, S. C. Silva, V. Magalhães et al., Atypical manifestations of cutaneous leishmaniasis in a region endemic for Leishmania braziliensis: clinical, immunological and parasitological aspects, PLoS Negl. Trop. Dis, vol.10, p.5100, 2016.

A. B. Guimaraes-costa, M. T. Nascimento, G. S. Froment, R. P. Soares, F. N. Morgado et al., Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.6748-6753, 2009.

Å. V. Holm, K. Tejle, K. E. Magnusson, A. Descoteaux, R. et al., Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKC? and defective phagosoem maturation, Cell. Microbiol, vol.3, pp.439-447, 2001.

I. C. Ibraim, R. R. De-assis, N. L. Pessoa, M. A. Campos, M. N. Melo et al., Two biochemically distinct lipophosphoglycans from Leishmania braziliensis and Leishmania infantum trigger different innate immune responses in murine macrophages, Parasites Vectors, vol.6, pp.1-11, 2013.

T. Ilg, R. Etges, P. Overath, M. J. Mcconville, J. Thomas-oates et al., Structure of Leishmania mexicana lipophosphoglycan, J. Biol. Chem, vol.267, pp.6834-6840, 1992.

J. B. Lima, T. Araújo-santos, M. Lázaro-souza, A. B. Carneiro, I. C. Ibraim et al., Leishmania infantum lipophosphoglycan induced-Prostaglandin E2 production in association with PPAR-? expression via activation of Toll like receptors-1 and 2, Sci. Rep, vol.7, p.14321, 2017.

N. F. Luz, B. B. Andrade, D. F. Feijo, T. Araujo-santos, G. Q. Carvalho et al., Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection, J. Immunol, vol.188, pp.4460-4467, 2012.

D. H. Macedo, A. Menezes-neto, J. M. Rugani, A. C. Rocha, S. O. Silva et al., Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. Mol. Biochem. Parasitol, vol.210, pp.50-54, 2016.

A. B. Mahoney, D. L. Sacks, E. Saraiva, G. Modi, and S. J. Turco, Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani-Sand fly interactions, Biochemistry, vol.38, pp.9813-9823, 1999.

P. M. Nogueira, R. R. Assis, A. C. Torrecilhas, E. M. Saraiva, N. L. Pessoa et al., Lipophosphoglycans from Leishmania amazonensis strains display immunomodulatory properties via TLR4 and do not affect sand fly infection, PLoS Negl. Trop. Dis, vol.10, pp.1-17, 2016.

P. M. Nogueira, A. C. Guimarães, R. R. Assis, J. Sadlova, J. Myskova et al., Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis, Parasites Vectors, vol.10, p.608, 2017.

L. F. Paranaíba, R. R. De-assis, P. M. Nogueira, A. C. Torrecilhas, J. H. Campos et al., Leishmania enriettii: biochemical characterisation of lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) and infectivity to Cavia porcellus, Parasites Vectors, vol.8, pp.1-14, 2015.

L. F. Passero, R. R. Assis, T. N. Da-silva, P. M. Nogueira, D. H. Macedo et al., Differential modulation of macrophage response elicited by glycoinositolphospholipids and lipophosphoglycan from Leishmania (Viannia) shawi, Parasitol. Int, vol.64, pp.32-35, 2015.

P. F. Quaresma, C. Ferreira, J. Marteleto, N. Rugani, J. D. Freire et al., Distinct genetic profiles of Leishmania (Viannia) braziliensis associate with clinical variations in cutaneous-leishmaniasis patients from an endemic area in Brazil, Parasitology, vol.145, pp.1161-1169, 2018.

J. N. Rugani, P. F. Quaresma, C. F. Gontijo, R. P. Soares, and R. L. Monteneto, Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: antimony resistance in human isolates from atypical lesions, Biomed. Pharmacother, vol.108, pp.1170-1180, 2018.

D. L. Sacks, P. F. Pimenta, M. J. Mcconville, P. Schneider, and S. J. Turco, Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan, J. Exp. Med, vol.181, pp.685-697, 1995.

F. Sallusto, C. E. Zielinski, and A. Lanzavecchia, Human Th17 subsets, Eur. J. Immunol, vol.42, pp.2215-2220, 2012.

R. P. Soares, C. Margonari, N. C. Secundino, M. E. Macêdo, S. M. Da-costa et al., Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia, J. Biomed. Biotechnol, p.827851, 2010.

R. P. Soares, T. Barron, K. Mccoy-simandle, M. Svobodova, A. Warburg et al., Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species, Exp. Parasitol, vol.107, pp.105-114, 2004.

R. P. Soares, T. L. Cardoso, T. Barron, M. S. Araújo, P. F. Pimenta et al., Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis, Int. J. Parasitol, vol.35, pp.245-253, 2005.

R. P. Soares, M. E. Macedo, C. Ropert, N. F. Gontijo, I. C. Almeida et al., Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis, Mol. Biochem. Parasitol, vol.121, pp.33-39, 2002.

G. F. Spath, L. A. Garraway, S. J. Turco, and S. M. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.9536-9541, 2003.

N. M. Tavares, T. Araújo-santos, L. Afonso, P. M. Nogueira, U. G. Lopes et al., Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils, J. Infect. Dis, vol.210, pp.656-666, 2014.

D. L. Tolson, S. J. Turco, R. P. Beecroft, and T. W. Pearson, The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies, 1989.

. Mol, Biochem. Parasitol, vol.35, pp.90113-90121

F. F. Tuon, V. S. Amato, H. A. Bacha, T. Almusawi, M. I. Duarte et al., Toll-like receptors and leishmaniasis, Infect. Immun, vol.76, pp.866-872, 2008.

S. J. Turco and A. Descoteaux, The lipophosphoglycan of Leishmania parasites, Annu. Rev. Microbiol, vol.46, pp.65-94, 1992.

A. F. Vinet, M. Fukuda, S. J. Turco, and A. Descoteaux, The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of Synaptotagmin V, PLoS Pathog, vol.5, p.1000628, 2009.