Abstract : Zika virus (ZIKV) infection is a serious public health concern due to its ability to induce neurological defects and its potential for rapid transmission at a global scale. However, no vaccine is currently available to prevent ZIKV infection. Here, we report the development of a yeast-derived subunit protein vaccine for ZIKV. The envelope protein domain III (EDIII) of ZIKV was produced as a secretory protein in the yeast Pichia pastoris. The yeast-derived EDIII could inhibit ZIKV infection in vitro in a dose-dependent manner, suggesting that it had acquired an appropriate conformation to bind to cellular receptors of ZIKV. Immunization with recombinant EDIII protein effectively induced antigen-specific binding antibodies and cellular immune responses. The resulting anti-EDIII sera could efficiently neutralize ZIKV representative strains from both Asian and African lineages. Passive transfer with the anti-EDIII neutralizing sera could confer protection against lethal ZIKV challenge in mice. Importantly, we found that purified anti-EDIII antibodies did not cross-react with closely related dengue virus (DENV) and therefore did not enhance DENV infection. Collectively, our results demonstrate that yeast-produced EDIII is a safe and effective ZIKV vaccine candidate.
https://hal-riip.archives-ouvertes.fr/pasteur-02332684
Contributor : Catherine Inizan <>
Submitted on : Friday, October 25, 2019 - 5:47:54 AM Last modification on : Monday, May 11, 2020 - 4:08:03 PM Long-term archiving on: : Sunday, January 26, 2020 - 12:56:38 PM