M. Abdeladhim, S. Kamhawi, and J. G. Valenzuela, What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity, Infect. Genet. Evol, vol.28, pp.691-703, 2014.

M. Akhoundi, T. Downing, J. Votypka, K. Kuhls, J. Lukes et al., Leishmania infections: molecular targets and diagnosis, Mol. Aspects Med, vol.57, pp.1-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01784485

J. Alexander and F. Brombacher, T helper1/t helper2 cells and resistance/susceptibility to Leishmania infection: is this paradigm still relevant?, Front. Immunol, vol.3, p.80, 2012.

J. Alvar, I. D. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PLoS ONE, vol.7, p.35671, 2012.

F. J. Andrade-narvaez, E. N. Loria-cervera, E. I. Sosa-bibiano, and N. R. Van-wynsberghe, Asymptomatic infection with American cutaneous leishmaniasis: epidemiological and immunological studies, Mem. Inst. Oswaldo Cruz, vol.111, pp.599-604, 2016.

A. Badirzadeh, T. Taheri, F. Abedi-astaneh, Y. Taslimi, Z. Abdossamadi et al., Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis, Parasite Immunol, vol.39, 2017.

F. Bahrami, H. Darabi, F. Riazi-rad, V. Khaze, S. Ajdary et al., FOXP3 expression and frequency of regulatory T cells in healed individuals from Leishmania major infection and the asymptomatic cases, Hum. Immunol, vol.75, pp.1026-1033, 2014.

M. Barral-netto, R. Badaro, A. Barral, R. P. Almeida, S. B. Santos et al., Tumor necrosis factor (cachectin) in human visceral leishmaniasis, J. Infect. Dis, vol.163, pp.853-857, 1991.

I. Bennis, L. Belaid, V. De-brouwere, H. Filali, H. Sahibi et al., The mosquitoes that destroy your face". Social impact of Cutaneous Leishmaniasis in South-eastern Morocco, a qualitative study, PLoS One, vol.12, p.189906, 2017.

I. Bennis, S. Thys, H. Filali, V. De-brouwere, H. Sahibi et al., Psychosocial impact of scars due to cutaneous leishmaniasis on high school students in Errachidia province, Morocco. Infect. Dis. Poverty, vol.6, p.46, 2017.

E. Bourreau, G. Prevot, J. Gardon, R. Pradinaud, and P. Launois, High intralesional interleukin-10 messenger RNA expression in localized cutaneous leishmaniasis is associated with unresponsiveness to treatment, J. Infect. Dis, vol.184, 2001.

E. Bourreau, C. Ronet, E. Darcissac, M. C. Lise, D. Sainte-marie et al., Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis, Infect. Immun, vol.77, pp.1465-1474, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00911619

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1535, 2004.

A. P. Campanelli, A. M. Roselino, K. A. Cavassani, M. S. Pereira, R. A. Mortara et al., CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells, J. Infect. Dis, vol.193, pp.1313-1322, 2006.

M. Castes, D. Trujillo, M. E. Rojas, C. T. Fernandez, L. Araya et al., Serum levels of tumor necrosis factor in patients with American cutaneous leishmaniasis, Biol. Res, vol.26, pp.233-238, 1993.

P. Cecílio, B. Perez-cabezas, N. Santarem, J. Maciel, V. Rodrigues et al., Deception and manipulation: the arms of leishmania, a successful parasite, Front. Immunol, vol.5, p.480, 2014.

M. K. Chahed, H. Bellali, S. Ben-jemaa, and T. Bellaj, Psychological and psychosocial consequences of zoonotic cutaneous leishmaniasis among women in tunisia: preliminary findings from an exploratory study, PLoS Negl. Trop. Dis, vol.10, p.5090, 2016.

S. M. Christensen, L. A. Dillon, L. P. Carvalho, S. Passos, F. O. Novais et al., Meta-transcriptome profiling of the human-Leishmania braziliensis cutaneous lesion, PLoS Negl. Trop. Dis, vol.10, p.4992, 2016.

A. M. Da-cruz, M. P. De-oliveira, P. M. De-luca, S. C. Mendonca, and S. G. Coutinho, Tumor necrosis factor-alpha in human american tegumentary leishmaniasis, Mem. Inst. Oswaldo Cruz, vol.91, pp.225-229, 1996.

R. Du, P. J. Hotez, W. S. Al-salem, and A. Acosta-serrano, Old World cutaneous leishmaniasis and refugee crises in the middle East and North Africa, PLoS Negl. Trop. Dis, vol.10, p.4545, 2016.

O. Erel, A. Kocyigit, M. S. Gurel, V. Bulut, A. Seyrek et al., Adenosine deaminase activities in sera, lymphocytes and granulocytes in patients with cutaneous leishmaniasis, Mem. Inst. Oswaldo Cruz, vol.93, pp.491-494, 1998.

J. França-costa, J. Van-weyenbergh, V. S. Boaventura, N. F. Luz, H. Malta-santos et al., Arginase I, polyamine, and prostaglandin E2 pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis, J. Infect. Dis, vol.211, pp.426-435, 2015.

A. Giudice, C. Vendrame, C. Bezerra, L. P. Carvalho, T. Delavechia et al., Macrophages participate in host protection and the disease pathology associated with Leishmania braziliensis infection, BMC Infect. Dis, vol.12, p.75, 2012.

M. Gogoi, A. Datey, K. T. Wilson, and D. Chakravortty, Dual role of arginine metabolism in establishing pathogenesis, Curr. Opin. Microbiol, vol.29, pp.43-48, 2016.

S. D. Gonçalves-de-albuquerque, E. S. Pessoa, L. A. Trajano-silva, T. C. De-goes, R. C. De-morais et al., The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of, Leishmaniasis. Front. Immunol, vol.8, p.1437, 2017.

C. González, O. Wang, S. E. Strutz, C. Gonzalez-salazar, V. Sanchez-cordero et al., Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species, PLoS Negl. Trop. Dis, vol.4, p.585, 2010.

P. Gueirard, A. Laplante, C. Rondeau, G. Milon, and M. Desjardins, Trafficking of Leishmania donovani promastigotes in non-lytic compartments in neutrophils enables the subsequent transfer of parasites to macrophages, Cell. Microbiol, vol.10, pp.100-111, 2008.

P. J. Hotez, L. Savioli, and A. Fenwick, Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control, PLoS Negl. Trop. Dis, vol.6, p.1475, 2012.

P. J. Hotez, L. Woc-colburn, and M. E. Bottazzi, Neglected tropical diseases in Central America and Panama: review of their prevalence, populations at risk and impact on regional development, Int. J. Parasitol, vol.44, pp.597-603, 2014.

B. P. Hurrell, I. B. Regli, and F. Tacchini-cottier, Different leishmania species drive distinct neutrophil functions, Trends Parasitol, vol.32, pp.392-401, 2016.

A. V. Ibarra-meneses, E. Carrillo, C. Sanchez, J. Garcia-martinez, D. Lopez-lacomba et al., Interleukin-2 as a marker for detecting asymptomatic individuals in areas where Leishmania infantum is endemic, Clin. Microbiol. Infect, vol.22, pp.739-740, 2016.

A. V. Ibarra-meneses, P. Ghosh, F. Hossain, R. Chowdhury, D. Mondal et al., IFN-gamma, IL-2, IP-10, and MIG as biomarkers of exposure to leishmania spp., and of cure in human visceral leishmaniasis, Front. Cell. Infect. Microbiol, vol.7, p.200, 2017.

W. Kammoun-rebai, I. Naouar, V. Libri, M. Albert, H. Louzir et al., Protein biomarkers discriminate Leishmania major-infected and non-infected individuals in areas endemic for cutaneous leishmaniasis, BMC Infect. Dis, vol.16, p.138, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358493

C. Karimkhani, V. Wanga, L. E. Coffeng, P. Naghavi, R. P. Dellavalle et al., Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study, Lancet Infect. Dis, vol.16, pp.584-591, 2013.

A. E. Kip, M. Balasegaram, J. H. Beijnen, J. H. Schellens, P. J. De-vries et al., Systematic review of biomarkers to monitor therapeutic response in leishmaniasis, Antimicrob. Agents Chemother, vol.59, pp.1-14, 2015.

A. Kocyigit, S. Gur, O. Erel, and M. S. Gurel, Associations among plasma selenium, zinc, copper, and iron concentrations and immunoregulatory cytokine levels in patients with cutaneous leishmaniasis, Biol. Trace Elem. Res, vol.90, pp.47-55, 2002.

A. Kocyigit, S. Gur, M. S. Gurel, V. Bulut, and M. Ulukanligil, Antimonial therapy induces circulating proinflammatory cytokines in patients with cutaneous leishmaniasis, Infect. Immun, vol.70, pp.6589-6591, 2002.

T. Lestinova, I. Rohousova, M. Sima, C. I. De-oliveira, and P. Volf, Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania, PLoS Negl. Trop. Dis, vol.11, p.5600, 2017.

H. Louzir, P. C. Melby, A. Ben-salah, H. Marrakchi, K. Aoun et al., Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major, J. Infect. Dis, vol.177, pp.1687-1695, 1998.

M. Maroli, M. D. Feliciangeli, L. Bichaud, R. N. Charrel, and L. Gradoni, Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern, Med. Vet. Entomol, vol.27, pp.123-147, 2013.

S. Marzouki, M. Abdeladhim, C. B. Abdessalem, F. Oliveira, B. Ferjani et al., Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans, PLoS Negl. Trop. Dis, vol.6, p.1911, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00835692

S. Marzouki, W. Kammoun-rebai, J. Bettaieb, M. Abdeladhim, S. Hadj-kacem et al., Validation of recombinant salivary protein PpSP32 as a suitable marker of human exposure to Phlebotomus papatasi, the vector of Leishmania major in Tunisia. PL-oS Negl, Trop. Dis, vol.9, p.3991, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01358512

N. Masoudzadeh, A. Mizbani, Y. Taslimi, V. Mashayekhi, H. Mortazavi et al., Leishmania tropica infected human lesions: whole genome transcription profiling, Acta Trop, vol.176, pp.236-241, 2017.

N. Maspi, A. Abdoli, and F. Ghaffarifar, Pro-and anti-inflammatory cytokines in cutaneous leishmaniasis: a review, Pathog. Glob. Health, vol.110, pp.247-260, 2016.

R. Mayeux, Biomarkers: potential uses and limitations, NeuroRx, vol.1, pp.182-188, 2004.

P. C. Melby, F. Andrade-narvaez, B. J. Darnell, and G. Valencia-pacheco, In situ expression of interleukin-10 and interleukin-12 in active human cutaneous leishmaniasis, FEMS Immunol. Med. Microbiol, vol.15, pp.101-107, 1996.

M. G. Mendonça, M. E. De-brito, E. H. Rodrigues, V. Bandeira, M. L. Jardim et al., Persistence of leishmania parasites in scars after clinical cure of American cutaneous leishmaniasis: is there a sterile cure?, J. Infect. Dis, vol.189, pp.1018-1023, 2004.

H. Mortazavi, P. Sadeghipour, Y. Taslimi, S. Habibzadeh, F. Zali et al., Comparing acute and chronic human cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica focusing on arginase activity, J. Eur. Acad. Dermatol. Venereol, vol.30, pp.2118-2121, 2016.

F. Oliveira, A. M. De-carvalho, and C. I. Oliveira, Sandfly saliva-leishmania-man: the trigger trio, Front. Immunol, vol.4, p.375, 2013.

F. Oliveira, B. Traore, R. Gomes, O. Faye, D. C. Gilmore et al., Delayed-type hypersensitivity to sand fly saliva in humans from a leishmaniasis-endemic area of Mali is Th1-mediated and persists to midlife, J. Invest. Dermatol, vol.133, pp.452-459, 2013.

L. H. Patino and J. D. Ramírez, RNA-seq in kinetoplastids: a powerful tool for the understanding of the biology and host-pathogen interactions, Infect. Genet. Evol, vol.49, pp.273-282, 2017.

P. Prieto-barja, P. Pescher, G. Bussotti, F. Dumetz, H. Imamura et al., Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani, Nat. Ecol. Evol, vol.1, pp.1961-1969, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02107201

I. B. Regli, K. Passelli, B. P. Hurrell, and F. Tacchini-cottier, Survival mechanisms used by some leishmania species to escape neutrophil killing, Front. Immunol, vol.8, p.1558, 2017.

M. Rosales-chilama, R. E. Gongora, L. Valderrama, J. Jojoa, N. Alexander et al., Parasitological confirmation and analysis of leishmania diversity in asymptomatic and subclinical infection following resolution of cutaneous leishmaniasis, PLoS Negl. Trop. Dis, vol.9, p.4273, 2015.

D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to Leishmania major in mice, Nat. Rev. Immunol, vol.2, pp.845-858, 2002.

P. Saha, S. Ganguly, M. Chatterjee, S. B. Das, P. K. Kundu et al., Asymptomatic leishmaniasis in kala-azar endemic areas of Malda district, PLoS Negl. Trop. Dis, vol.11, p.5391, 2017.

B. M. Scorza, E. M. Carvalho, and M. E. Wilson, Cutaneous manifestations of human and murine leishmaniasis, Int. J. Mol. Sci, vol.18, p.1296, 2017.

K. Strimbu and J. A. Tavel, What are biomarkers?, Curr. Opin. HIV AIDS, vol.5, pp.463-466, 2010.

I. Suffia, S. K. Reckling, G. Salay, and Y. Belkaid, A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection, J. Immunol, vol.174, pp.5444-5455, 2005.

Y. Taslimi, P. Sadeghipour, S. Habibzadeh, V. Mashayekhi, H. Mortazavi et al., A novel non-invasive diagnostic sampling technique for cutaneous leishmaniasis, PLoS Negl. Trop. Dis, vol.11, p.5750, 2017.

C. Teixeira, R. Gomes, N. Collin, D. Reynoso, R. Jochim et al., Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America, PLoS Negl. Trop. Dis, vol.4, p.638, 2010.

K. Theppeang, T. A. Glass, K. Bandeen-roche, A. C. Todd, C. A. Rohde et al., Gender and race/ethnicity differences in lead dose biomarkers, Am. J. Public Health, vol.98, pp.1248-1255, 2008.

J. L. Turk, Relation between delayed hypersensitivity and cell-mediated immunity, J. R. Soc. Med, vol.72, pp.243-245, 1979.

G. Van-der-auwera, C. Ravel, J. J. Verweij, A. Bart, G. Schonian et al., Evaluation of four single-locus markers for Leishmania species discrimination by sequencing, J. Clin. Microbiol, vol.52, pp.1098-1104, 2014.

C. Vergel, R. Palacios, H. Cadena, C. J. Posso, L. Valderrama et al., Evidence for leishmania (viannia) parasites in the skin and blood of patients before and after treatment, J. Infect. Dis, vol.194, pp.503-511, 2006.

A. Vijayamahantesh, A. Mit, M. R. Dikhit, R. K. Pandey, K. Singh et al., Elevated serum ADA activity as a marker for diagnosis and prognosis of visceral leishmaniasis and post kala-azar dermal leishmaniasis in indian patients, PLoS ONE, vol.11, 2016.

E. Von-stebut and S. Tenzer, Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major, Int. J. Med. Microbiol, vol.308, pp.206-214, 2017.

I. Vouldoukis, F. Issaly, C. Fourcade, N. Paul-eugene, M. Arock et al., CD23 and IgE expression during the human immune response to cutaneous leishmaniasis: possible role in monocyte activation, Res. Immunol, vol.145, pp.17-27, 1994.

X. Xu, F. Oliveira, B. W. Chang, N. Collin, R. Gomes et al., Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection, J. Biol. Chem, vol.286, pp.32383-32393, 2011.

M. Zawrotniak and M. Rapala-kozik, Neutrophil extracellular traps (NETs) -formation and implications, Acta Biochim. Pol, vol.60, pp.277-284, 2013.