A. I. Ko, C. Goarant, and M. Picardeau, Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen, Nat Rev Microbiol, vol.7, pp.736-783, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00450871

A. T. Vincent, O. Schiettekatte, C. Goarant, V. K. Neela, E. Bernet et al., Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics, PLoS Negl Trop Dis, vol.13, p.7270, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02275485

A. Lambert, M. Picardeau, D. A. Haake, R. W. Sermswan, A. Srikram et al., FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath, Infect Immun, vol.80, pp.2019-2044, 2012.

F. San-martin, A. E. Mechaly, N. Larrieux, E. A. Wunder, A. I. Ko et al., Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis, Acta Crystallogr F Struct Biol Commun, vol.73, pp.123-132, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02554311

E. A. Wunder, C. P. Figueira, N. Benaroudj, B. Hu, B. A. Tong et al., A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete, Mol Microbiol, vol.101, pp.457-70, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02548535

E. A. Wunder, L. Slamti, D. N. Suwondo, K. H. Gibson, Z. Shang et al., FcpB is a surface filament protein of the endoflagellum required for the motility of the spirochete Leptospira, Front Cell Infect Microbiol, vol.8, p.130, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02100036

J. Malmstrom, M. Beck, A. Schmidt, V. Lange, E. W. Deutsch et al., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans, Nature, vol.460, pp.762-767, 2009.

K. H. Gibson, F. Trajtenberg, E. A. Wunder, M. R. Brady, S. Martin et al., An asymmetric sheath controls flagellar supercoiling and motility in the Leptospira spirochete, Elife, vol.9, p.53672, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02549761

C. Werts, Interaction of leptospira with the innate immune system, Curr Top Microbiol Immunol, vol.415, pp.163-87, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02337102

Y. Rossez, E. B. Wolfson, A. Holmes, D. L. Gally, and N. J. Holden, Bacterial flagella: twist and stick, or dodge across the kingdoms, PLoS Pathog, vol.11, p.1004483, 2015.

A. Vijayan, M. Rumbo, C. Carnoy, and J. C. Sirard, Compartmentalized antimicrobial defenses in response to flagellin, Trends Microbiol, vol.26, pp.423-458, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01671191

M. Matusiak, N. Van-opdenbosch, V. Walle, L. Sirard, J. C. Kanneganti et al., Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5, Proc Natl Acad Sci, vol.112, pp.1541-1547, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182904

M. Bens, S. Vimont, B. Mkaddem, S. Chassin, C. Goujon et al., Flagellin/TLR5 signalling activates renal collecting duct cells and facilitates invasion and cellular translocation of uropathogenic Escherichia coli, Cell Microbiol, vol.16, pp.1503-1520, 2014.

M. E. Biedma, D. Cayet, J. Tabareau, A. H. Rossi, K. I. Vicak-kocjan et al., Recombinant flagellins with deletions in domains D1, D2, and D3: characterization as novel immunoadjuvants, Vaccine, vol.37, pp.652-63, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02078833

M. F. Lacroix-lamande-s,-d'andon, M. E. Ratet, G. Philpott, D. J. Girardin, and S. E. , Downregulation of the Na/K-ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome, J Immunol, vol.188, pp.2805-2819, 2012.

C. Werts, R. I. Tapping, J. C. Mathison, T. H. Chuang, V. Kravchenko et al., Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism, Nat Immunol, vol.2, pp.346-52, 2001.

G. Ratet, I. Santecchia, M. Fanton-d'andon, F. Vernel-pauillac, R. Wheeler et al., LipL21 lipoprotein binding to peptidoglycan enables Leptospira interrogans to escape NOD1 and NOD2 recognition, PLoS Pathog, vol.13, p.1006725, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02337055

M. Fanton-d'andon, N. Quellard, B. Fernandez, G. Ratet, S. Lacroix-lamande et al., Leptospira interrogans induces fibrosis in the mouse kidney through Inos-dependent, TLR-and NLR-independent signaling pathways, PLoS Negl Trop Dis, vol.8, p.2664, 2014.

M. Picardeau and A. Brenot, Saint Girons I. First evidence for gene replacement in Leptospira spp. inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella, Mol Microbiol, vol.40, pp.189-99, 2001.

P. Bourhy, H. Louvel, G. I. Picardeau, and M. , Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon, J Bacteriol, vol.187, pp.3255-3258, 2005.

M. Matsui, V. Rouleau, L. Bruyere-ostells, and C. Goarant, Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice, Infect Immun, vol.79, pp.4480-92, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00655436

I. Santecchia, F. Vernel-pauillac, O. Rasid, J. Quintin, M. Gomes-solecki et al., Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection, PLoS Pathog, vol.15, p.1007811, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02164759

G. Ratet, F. J. Veyrier, M. Fanton-d'andon, X. Kammerscheit, M. A. Nicola et al., Live imaging of bioluminescent Leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics, PLoS Negl Trop Dis, vol.8, p.3359, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01415707

F. Vernel-pauillac and C. Werts, In vivo imaging of bioluminescent leptospires, Methods Mol Biol, vol.2134, pp.149-60, 2020.

J. Cagliero, K. Huet, and M. Matsui, Use of golden syrian hamster as an animal model to study leptospirosis-associated immune responses, Methods Mol Biol, vol.2134, pp.243-55, 2020.

M. Matsui, M. E. Soupe, J. Becam, and C. Goarant, Differential in vivo gene expression of major Leptospira proteins in resistant or susceptible animal models, Appl Environ Microbiol, vol.78, pp.6372-6378, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00727152

H. J. Metcalfe, L. Ragione, R. M. Smith, D. G. Werling, and D. , Functional characterisation of bovine TLR5 indicates species-specific recognition of flagellin, Vet Immunol Immunopathol, vol.157, pp.197-205, 2014.

C. Mouville and N. Benaroudj, Survival tests for Leptospira spp, Methods Mol Biol, vol.2134, pp.215-243, 2020.

S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol Biol Evol, vol.35, pp.1547-1556, 2018.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-58, 2015.

T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch et al., Meeting modern challenges in visualization and analysis, Protein Sci, vol.27, pp.14-25, 2018.

C. Chassin, M. Picardeau, J. M. Goujon, P. Bourhy, N. Quellard et al., TLR4-and TLR2-mediated B cell responses control the clearance of the bacterial pathogen, Leptospira interrogans, J Immunol, vol.183, pp.2669-77, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668154

C. R. Sterling and A. B. Thiermann, Urban rats as chronic carriers of leptospirosis: an ultrastructural investigation, Vet Pathol, vol.18, pp.628-665, 1981.

D. Bonhomme, I. Santecchia, F. Vernel-pauillac, M. Caroff, P. Germon et al., Leptospiral LPS escapes mouse TLR4 internalization and TRIF associated antimicrobial responses through O antigen and associated lipoproteins, PLoS Pathog, 2020.

C. Werts, S. E. Girardin, D. J. Philpott, and . Tir, PYRIN: three domains for an antimicrobial triad, Cell Death Differ, vol.13, pp.798-815, 2006.

M. A. Nahori, E. Fournie-amazouz, N. S. Que-gewirth, V. Balloy, M. Chignard et al., Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells, J Immunol, vol.175, pp.6022-6053, 2005.

V. Sambri, A. Marangoni, L. Giacani, R. Gennaro, R. Murgia et al., Comparative in vitro activity of five cathelicidin-derived synthetic peptides against Leptospira, Borrelia and Treponema pallidum, J Antimicrob Chemother, vol.50, pp.895-902, 2002.

J. C. Lindow, E. A. Wunder, S. J. Popper, J. N. Min, P. Mannam et al., Cathelicidin insufficiency in patients with fatal leptospirosis, PLoS Pathog, vol.12, p.1005943, 2016.

W. S. Song, Y. J. Jeon, B. Namgung, M. Hong, and S. I. Yoon, A conserved TLR5 binding and activation hot spot on flagellin, vol.7, p.40878, 2017.

S. I. Yoon, O. Kurnasov, V. Natarajan, M. Hong, A. V. Gudkov et al., Structural basis of TLR5-flagellin recognition and signaling, Science, vol.335, pp.859-64, 2012.

V. Forstneric, K. I. Vicak-kocjan, T. Plaper, R. Jerala, and M. Bencina, The role of the C-terminal D0 domain of flagellin in activation of Toll like receptor 5, PLoS Pathog, vol.13, p.1006574, 2017.

M. Xu, Y. Xie, M. Tan, K. Zheng, Y. Xiao et al., The N-terminal D1 domain of Treponema pallidum flagellin binding to TLR5 is required but not sufficient in activation of TLR5, J Cell Mol Med, vol.23, pp.7490-504, 2019.

J. H. Kim, B. Namgung, Y. J. Jeon, W. S. Song, J. Lee et al., Helicobacter pylori flagellin: TLR5 evasion and fusion-based conversion into a TLR5 agonist, Biochem Bioph Res Commun, vol.505, pp.872-880, 2018.

C. Jiang, M. Xu, X. Kuang, X. J. Tan, M. Xie et al., Treponema pallidum flagellins stimulate MMP-9 and MMP-13 expression via TLR5 and MAPK/NF-kappaB signaling pathways in human epidermal keratinocytes, Exp Cell Res, vol.361, pp.46-55, 2017.

M. G. Goris, J. F. Wagenaar, R. A. Hartskeerl, E. C. Van-gorp, S. Schuller et al., Potent innate immune response to pathogenic Leptospira in human whole blood, PLoS One, vol.6, 2011.

V. Forstneric, K. I. Vicak-kocjan, A. Ljubetic, R. Jerala, and M. Bencina, Distinctive recognition of flagellin by human and mouse toll-like receptor 5, PLoS One, vol.11, 2016.

M. F. Ferrer, E. Scharrig, C. N. Ripodas, A. L. Drut, R. et al., Macrophages and Galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis, Front Cell Infect Microbiol, vol.8, p.384, 2018.

A. Tahoun, K. Jensen, Y. Corripio-miyar, S. Mcateer, D. Smith et al., Host species adaptation of TLR5 signalling and flagellin recognition. Sci Rep, vol.7, p.17677, 2017.

M. Gomes-solecki, I. Santecchia, and C. Werts, Animal models of leptospirosis: of mice and hamsters. Front Immunol, vol.8, p.58, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02337120

K. I. Vicak-kocjan, V. Forstneric, G. Panter, R. Jerala, M. Bencina et al., Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor, Biochem Biophys Res Commun, vol.104, pp.40-45, 2013.

J. Ruby, M. Martin, M. J. Passineau, V. Godovikova, J. C. Fenno et al., Activation of the innate immune system by Treponema denticola periplasmic flagella through toll-like receptor 2, Infect Immun, vol.86, pp.251-269, 2018.

F. B. Wang, V. C. Virkaite-krupovic, M. Kreutzberger, Z. L. Su, G. De-oliveira et al., An extensively glycosylated archaeal pilus survives extreme conditions, Nat Microbiol, vol.4, pp.1401-1411, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02557186

K. Kurniyati, J. F. Kelly, E. Vinogradov, A. Robotham, Y. B. Tu et al., A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola. Mol Microb, vol.103, pp.67-85, 2017.

N. W. Charon, A. Cockburn, C. H. Li, J. Liu, K. A. Miller et al., The unique paradigm of spirochete motility and chemotaxis, Annu Rev Microbiol, vol.66, pp.349-70, 2012.

C. Li, C. W. Wolgemuth, M. Marko, D. G. Morgan, and N. W. Charon, Genetic analysis of spirochete flagellin proteins and their involvement in motility, filament assembly, and flagellar morphology, J Bacteriol, vol.190, pp.5607-5622, 2008.

L. F. Chou, T. W. Chen, H. Y. Yang, M. Y. Chang, S. H. Hsu et al., Murine renal transcriptome profiles upon leptospiral infection: implications for chronic kidney diseases, J Infect Dis, vol.218, pp.1411-1434, 2018.

C. Li, M. Sal, M. Marko, and N. W. Charon, Differential regulation of the multiple flagellins in spirochetes, J Bacteriol, vol.192, pp.2596-603, 2010.

M. I. Kim, C. Lee, J. Park, B. Y. Jeon, and M. Hong, Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs, Sci Rep, vol.8, p.5814, 2018.

E. M. Carrillo-casas, R. Hernandez-castro, F. Suarez-guemes, and A. De-la-pena-moctezuma, Selection of the internal control gene for real-time quantitative rt-PCR assays in temperature treated Leptospira, Curr Microbiol, vol.56, pp.539-585, 2008.