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Abstract 

The emergence of genomics technologies, especially those combining single-cell resolution 

and high throughput sequencing, is enabling us to characterize physiopathological mechanisms at a 

resolution never achieved before. Single-cell genomics sequencing allows researcher to highlight 

previously hidden intra-tissue cellular heterogeneity and its influences on diseases development. Our 

ability to generate high-throughput and single-cell data opens new perspectives but also brings new 

challenges to face. In my thesis, I focused on implementing new strategies to address some of these 

limitations providing with new evidence toward a better understanding of early disease mechanisms, 

focusing on two models: the early epigenetics programming of hematopoietic stem and progenitor 

cells (HSPCs) and the Alzheimer’s Diseases (AD) susceptibility gene BIN1 function on study.  

In my first model, I leveraged single-cell genomics to decipher early influence of being large for 

gestational age (LGA) on HSPCs plasticity. We characterized the transcriptional and functional 

consequences of DNA methylation alterations observed in LGA HSPCs compared to appropriately 

grown neonates (CTRL) combining single-cell epigenomics, single-cell transcriptomics, and in vitro 

analysis. We found that DNA hypermethylation is associated with hematopoietic stem cells (HSC) 

specific chromatin rearrangement in the regulatory network of EGR1, KLF2, and KLF4 transcription 

factors, affecting downstream genes known to sustain HSCs quiescence like SOCS3, JUNB, and DUSP2. 

Furthermore, we found that this network was enriched for genes with decrease expression in LGA 

compared to CTRL, supporting transcriptional consequences of these epigenetics alterations. Finally, 

leveraging both single-cell resolution of our transcriptomics data and in vitro differentiation analysis, 

we found a reduce ability for LGA HSC to stay quiescent/undifferentiated in response to stimulations. 

Together, this single-cell genomics integrative approach supports that human fetal overgrowth affects 

HSC quiescence signaling via epigenetic remodeling. 

With my second model, I leveraged single-cell transcriptomics to investigate the role of BIN1, 

the 2nd most AD associated gene, on human brain models. We investigated the cellular effect of BIN1 

deletion on both 2D neuronal culture and 3D cerebral organoid derived from human iPSC. We found 

that BIN1 loss-of-function leads to specific transcriptional alterations in glutamatergic neurons, 

resembling to the one found in AD brains, involving several genes associated with calcium homeostasis, 

ion transport and synapse function. Using functional assay, we found that calcium homeostasis and 

neural networks activity were dysregulated in BIN1 deleted brain models, and that BIN1 was able to 

interact with voltage-gated calcium channel Cav1. Pharmacological calcium channel blocker was able 

to partially rescue BIN1 mediated neuronal activity dysregulation supporting important BIN1 role in 

calcium channel regulation. These single-cell approaches have allowed to show neuronal specific 

5



Abstract 

 

6 
 

alteration of BIN1 deletion, and functionally validate role of BIN1 in calcium homeostasis related 

neuronal activity, while highlight its potential role in AD pathogenesis. 
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Résumé 

L’émergence des approches de génomiques, en particulier depuis l’apparition des technologies 

de séquençage à l’échelle de la cellule unique (SGC), nous a permis de caractériser des mécanismes 

physiopathologiques à une résolution jamais atteinte auparavant. Le SGC a mis en évidence 

l'hétérogénéité cellulaire intra-tissulaire ainsi que son influence sur le développement des maladies, 

et ouvert de nouvelles perspectives vers une meilleure compréhension de ces mécanismes. Dans ma 

thèse, j’ai mis en œuvre de nouvelles stratégies d’analyse permettant l’intégration de ces données à 

l’échelle de la cellule unique dans deux modèles :  la programmation épigénétique précoce des cellules 

souches et progéniteurs hématopoïétiques (CSPH), et l’étude du gène BIN1 dans la maladie 

d’Alzheimer.  

Dans mon premier modèle, j'ai exploité la technologie de SGC pour étudier l'influence d’un 

excès de croissance gestationnelle (macrosomie) sur la plasticité des CSPH. Nous avons caractérisé les 

conséquences transcriptionnelles et fonctionnelles de l’altération de la méthylation de l'ADN 

observées chez les nouveau-nés macrosomes (NNM). Pour cela, nous avons intégré des données 

épigénétiques transcriptionnelles, et fonctionnelles. Nous avons découvert que l'hyperméthylation de 

l'ADN chez les NNM était associée à un réarrangement de la chromatine dans les cellules souches 

hématopoïétiques (CSH), touchant spécifiquement les facteurs de transcription EGR1, KLF2, et KLF4 

connus pour soutenir la quiescence des CSH et réguler leur activation. Ce réseau de facteurs de 

transcriptions inclut notamment SOCS3, JUNB et DUSP2, et est enrichi en gènes dont l'expression est 

réduite chez les NNM, suggérant que les altérations épigénétiques ont des conséquences sur 

l’expression de ces gènes. Enfin, grâce à la résolution à la cellule unique de nos données, et à l'analyse 

de la différenciation in vitro des CSH, nous avons constaté une capacité réduite des CSH à rester 

quiescentes/indifférenciées en réponse aux stimulations chez les nouveau-nés macrosomes. Notre 

approche intégrative s’appuyant sur l’étude des différents facteurs régulant l’expression génique à 

l’échelle de la cellule unique nous a permis de confirmer que l’excès de croissance fœtale affectait la 

signalisation régulant la quiescence des CSH par le biais d'un remodelage épigénétique.  

Dans mon deuxième modèle, j'ai exploité le SGC pour étudier le rôle de BIN1, le deuxième gène 

le plus associé à la maladie d'Alzheimer, sur des modèles de cerveau humain. Nous avons étudié l'effet 

de la délétion de BIN1 dans une culture neuronale en 2D et sur un organoïde cérébral en 3D tout deux 

dérivés de cellules souches pluripotentes induites (iPSC) humains. Nous avons découvert que la perte 

de fonction de BIN1 entraînait des altérations transcriptionnelles spécifiquement dans les neurones 

glutaminergiques, ressemblant au changement d’expression trouvé chez les individus affectés par la 

maladie d'Alzheimer. Ces gènes sont fortement associés à la régulation du calcium dans les neurones, 
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ainsi qu’au transport ionique et à la fonction des synapses. En utilisant des tests fonctionnels in vitro, 

nous avons découvert que la régulation du calcium et l'activité des réseaux neuronaux étaient altérés 

dans les modèles cérébraux ou BIN1 était inactivé, et que BIN1 était capable d'interagir avec le canal 

calcique Cav1. Le blocage de ce canal par un inhibiteur pharmacologique permet d’empêcher 

partiellement l’altération de l'activité neuronale médiée par BIN1, soutenant son rôle important dans 

la régulation des canaux calciques. Cette approche de SGC a permis de mettre en avant une altération 

spécifique des neurones due à la délétion de BIN1, et valider fonctionnellement le rôle de BIN1 dans 

l'activité neuronale liée à la régulation du calcium intracellulaire, tout en soulignant son rôle potentiel 

dans la pathogenèse de la maladie d'Alzheimer. 

  

8



Remerciements/ Acknowledgement 

 

9 
 

Remerciements/ Acknowledgement 

Ces trois années de thèse ont été une expérience exceptionnelle pour moi, autant d’un point 

de vue scientifique que d’un point de vue humain. J’ai appris énormément sur le plan technique, 

scientifique, mais aussi personnel, et cela grâce aux diverses et multiples interactions que j’ai pu avoir 

avec chacun d’entre vous tout au long de ces 3 années.  Pour cela, je vous en serais eternellement 

reconnaissant. 

Tout d’abord, un grand (grand) merci au Dr Fabien Delahaye, qui été le directeur de thèse que 

beaucoup aimerait avoir, d’un soutien indéfectible, arrangeant, à l’écoute et authentique. Nos 

interactions, riches et variées, scientifiques ou non, ont largement contribué à mon épanouissement 

et au fait que je n’ai pas vu passer ces 3 années. A l’heure où j’écris ces lignes, je ne pense ne pas avoir 

totalement réalisé à quel point cette relation était unique, j’espère qu’elle continuera pour de 

nouveaux projets scientifiques. Merci pour tous. 

Un grand merci également au Pr. Philippe Froguel de m’avoir permis d’intégrer son laboratoire 

puis partagé son expérience, expertise et vision de la recherche. Vous m’avez toujours donné de bon 

conseils pour la thèse ou l’après thèse. L’apport de votre recul et encouragements à certain temps clé 

de la thèse ont été très important pour moi. Merci également au Dr Amélie Bonnefond, qui a su 

m’apporter son soutien dans les temps instables de ma thèse, mais aussi sa confiance pour installer la 

technologie single-cell dans le laboratoire NGS/ Plateforme LIGAN. 

Je tiens également à remercier Dr Arnaud Carrier, mon coéquipier des premières heures. Merci 

pour tout ce que tu as fait pour la plateforme single-cell et le projet LGA. Merci de m’avoir formé aux 

manipulations single-cell et pour tout tes apports/protocoles qui ont été précieux et m’ont permis de 

continuer les travaux de recherches dans de bonnes conditions même une fois que tu étais parti. 

Une attention particulière au Dr Marcos Costa et son équipe, pour cette collaboration 

fructueuse et ces riches interactions scientifiques. En plus de m’avoir fait murir scientifiquement (et 

fait murir mon anglais), vous m’avez confirmé que la vision que j’ai de la recherche n’est pas une 

utopie. 

Je tiens également à remercier chaudement l’équipe Bio-informatique de l’UMR, Mehdi, Alaa, 

Souhila et Lionel, pour leur aide sur le développement bio-informatique et le pipeline de single cell. 

Merci également à Mickaël, pour ses nombreuses aides sur R ou son environnement, et Lijao et 

Mathilde pour avoir toujours était présentes pour répondre à mes questions statistiques ou systèmes.  

Un grand merci également à Delphine et toute l’équipe TAG menée par le Dr David Hot, pour 

leur sympathie et soutien technique pour l’utilisation du Nanodrop, Bioanalyzer et le thermocycleur à 

9



Remerciements/ Acknowledgement 

 

10 
 

Pasteur. Sans vous, la plateforme de single-cell n’aurait pas eu la même convenue. Merci également 

au Dr Sylvianne Pied et le reste de son équipe pour son aide technique et matériel notamment pour le 

partage de la salle de culture. 

Une thèse serait dure à mener sans le soutien de bons amis qui comprennent ce que tu vis.  

Lucas mon compère des « presques » premières heures, tu as été un soutient énorme et 

devenu un ami, très rapidement. Cette connexion unique que l’on a et nos diverses discussions 

scientifiques, (géo)politiques ou philosophiques (et même économique !) y ont largement contribué 

et m’ont apporté recul et légèreté nécessaire pour apprécier cette aventure. Merci d’être entré dans 

ma vie.  

 Vincent, tu es arrivé il y a seulement un an, et pourtant j’ai l’impression qu’on se connait 

depuis 10 ans. Merci énormément pour tous ces moments partagés avec toi et Lucas, à l’open space 

étudiants ou ailleurs (surtout ailleurs), pour ta fraicheur, finesse d’esprit et d’humour, mais également 

pour ton soutient dans les moments plus stressant. Je suis fier de te compter parmi mes amis. 

 Erwan, Dolores, vous êtes les suivants, évidemment. Merci à vous aussi, pour votre gentillesse, 

sympathie et folie qui nous a si facilement réunis, pour ces moments où l’on a chanté à tue tête au 

karaoké, ou où l’on a escaladé des montagnes avec plus ou moins de succès. 

 Une attention également à toi Nawel, la battante au grand cœur, même si l’on ne se voyait 

pas tous les jours, moi qui était à Pasteur la plupart du temps, tu m’as toujours apporté ton soutient 

et écoute dès les premiers mois de thèse, et je t’en remercie.  

 Ma thèse n’aurait également pas eu la même saveur sans mes compères de Pasteur, alors 

merci Inès, Jérémy, pour votre soutien et pour les nombreux moments de détentes que l’on a pu 

partager à l’Alchimiste ou ailleurs.  

Merci également à toi Théo, copain de thèse en bioinformatique devenu «el  presidente » de 

Bioaddoct. On n’a pas eu beaucoup de temps pour se voir la dernière année, mais ton soutien lors des 

deux premières années m’a été très précieux.  

La famille c’est très important pour surmonter cette épreuve, et heureusement, j’en ai une 

formidable. Merci du fond cœur Maman, Papa, Amandine, pour votre soutien indéfectible même dans 

les moments les plus durs, je suis fier d’avoir une famille comme vous et tellement reconnaissant. Je 

vous aime. 

Finally, I would like to thanks Prof Susan Ozanne and Dr Pilib Ó Broin to accept being reporter 

of this thesis, and Pr. Didier Vieau and Dr Marco Antonio Mendoza to be reviewers for my PhD Defense. 

10



Remerciements/ Acknowledgement 

 

11 
 

Thank you also Dr Delphine Eberle to accept my special invitation for my PhD defense. Another thank-

you to Dr Pilib O Broin and Pr. Didier Vieau to have followed me and give feedback during these 3 years 

for my CSI. 

  

11



Abbreviations 

 

12 
 

Abbreviations 

Abeta Amyloid beta  

ACDs Adult chronic diseases  

AD Alzheimer’s diseases  

APOE Apolipoprotein E 

APOE4  allelic version ε4 of APOE 

APP Amyloid Precursors protein 

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing 

Bisulfite-Seq  Bisulfited DNA Sequencing 

cDNA  complementary DNA 

ChIP Chromatin Immunorecipitation 

ChIP-seq ChIP-sequencing  

ChIP-seq Chromatin Immunorecipitation sequencing 

CpG  Cytosine-phospate-Guanine 

CREs cis-regulatory elements  

CRISPR  clustered regularly interspaced short palindromic repeats 

CRISPRi CRISPR interference 

CTRL appropriately grown neonates  

CVD cardiovascular diseases 

dATP deoxyadenine triphosphate 

dCTP deoxycytosine triphosphate 

ddTTP deoxythymine triphosphate 

DEGs differentially expressed genes  

dGTP deoxyguanine triphosphate 

DMCs differentially methylated CpGs 

DNA  Deoxyribonucleic acid 

DNMT DNA methyltransferase 

dNTP deoxynucleotides triphosphate 

dNTP dideoxynucleotides triphosphate 

DOHaD developmental origins of health and diseases  

12



Abbreviations 

 

13 
 

DSB DNA double strand break  

EMP erythro-myeloid progenitors  

EOAD early onset AD  

eQTLs expression quantitative traits loci  

eQTM expression Quantitative Traits Methylation  

EWAS epigenome wide association studies  

FACS Fluorescence activated cell sorting  

FISH RNA fluorescence in situ hybridization 

GABA gamma-aminobutyric acid 

GDM gestational diabetes mellitus  

GO  Gene Ontology database 

GSEA Gene Set Enrichment Analysis 

GTEx Genotype-Tissue Expression project 

GWAS genome wide association studies 

H3K27ac  acetylation of the Lysine in the 27th position of the Histone H3 

H3K36Me3  tri-methylation of the Lysine in the 36th position of the Histone H3 

H3K4Me3  tri-methylation of the Lysine in the 4th position of the Histone H3 

H3K9Me3  tri-methylation of the Lysine in the 9th position of the Histone H3 

HDAC Histone Deacetylase 

HDL high density lipoprotein  

HELP  HpaII tiny fragment Enrichment by Ligation-mediated PCR 

HFD high fat diet  

hiNs hiPSC derived neuronal culture 

hiPSC human iPSC  

HMT Histone methyltransferase  

HPA hypothalamic–pituitary–adrenal  

HSC hematopoetic stem cells  

HSPCs hematopoietic stem and progenitors cells  

HTO hashtag oligonucleotides for sample multiplexing before scRNA-seq 

IEGs immediate early response genes  

13



Abbreviations 

 

14 
 

IGF1 Insulin like Growth Factor 1  

iPSC induced pluripotent stem cells  

KEGG  Kyoto Encyclopedia of Genes and Genomes 

KI knock-in 

KD knock-down  

KO knock-out  

LGA large for gestational age  

LMPPs Lymphoid-primed multipotential progenitors 

lncRNA long non coding RNA  

LSI latent semantic indexing  

LT-HSC  Long term HSC 

LTP long term potentiation  

LVGCCs L-type voltage-gated calcium channels  

MAF minor allele frequency 

MBDs methyl-CpG-binding domain proteins  

miRNA  micro RNA 

MNC mononuclear cells  

MNN mutual nearest neighbors  

MPP hematopoietic multipotent progenitors 

mQTLs methylation Quantitative Traits Loci  

mRNA messenger RNA 

MSCs mesenchymal stem cells  

NFTs neurofribrillary tangles  

NGS new generation sequencing 

NPCs neural progenitor cells 

PCA principal component analysis  

PCR Polymerase chain reaction 

POMC proopiomelanocortin  

pre-mRNA  premature messenger RNA 

PRS polygenic risks score 

14



Abbreviations 

 

15 
 

QTLs quantitative traits loci  

RAGE Receptor for Advanced Glycosylation End  

RISC RNA-induced silencing complex  

RNA ribonucleic acid 

RNA-seq RNA sequencing  

SAM S-Adenosyl methionine 

scATAC-seq single-cell ATAC sequencing 

SCENIC Single-Cell rEgulatory Network Inference and Clustering 

scRNA-seq Single-cell RNA sequencing 

SGA  small for gestational age  

sgRNA  single guide RNA 

shRNA short hairpin RNA  

siCTRL siRNAs control 

siKLF2  siRNAs targetting KLF2 

siRNAs small interfering RNAs  

T2D type 2 diabetes  

TALEs transcription activator-like effectors  

TF transcription factor 

UMI unique molecular identifier  

US  United States 

UV  Ultra-violet 

WES whole-exome sequencing  

WGS whole genome sequencing  

WHO World Human Health Organization 

WT wild type  

ZFNs Zinc finger nucleases  

  

  

15



Preface 

 

16 
 

Preface 

Adult chronic diseases (ACDs) are the leading cause of death worldwide, accounting for 90% 

of mortality in developed countries 1. ACDs occurrences increase exponentially with age (figure1) thus 

the growing aging of the population predict high health and societal consequences in the next decades. 

Such prevalence calls for new strategies to manage and prevent ACDs. Research on these domains is 

intense but early mechanism involved in their development are still not completely understood. ACDs 

are multifactorial relying on complex interactions between environmental and (epi)genetics factors 

making it difficult to pinpoint specific targets and causal mechanisms. However, the emergence of 

genomics technologies these recent years, especially those at single-cell resolution, enable us to 

characterize these mechanisms at a resolution never achieved before.  Single-cell genomics sequencing 

allows researcher to highlight previously hidden cellular heterogeneity and its influences on diseases 

development. Our ability to generate high-throughput and single-cell data opens new perspectives but 

also brings new challenges to face. In my thesis, I focused on implementing new strategies to address 

some of these limitations providing with new evidence toward better understanding of early disease 

mechanisms, focusing on two models: the fetal programming of ACDs and the Alzheimer’s Diseases 

(AD) susceptibility gene BIN1 function on study. 

  

Figure 1 :  Exponentional increased of ACDs incidence with age. Data collected from the  

UK Biobank. Reprinted from Zenin et al ,  communications biology, 2019   
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INTRODUCTION 

I. Genomics approaches to understand adult chronic diseases etiology 

I.1. Adult chronic diseases  

Adult chronic diseases (ACDs) are chronic diseases whose onset increase with age, leading to 

progressive and permanent consequences. ACDs are multifactorial, relying on a detrimental interplay 

between (epi)genetics and environmental factors in the context of aging. Not restricted to genetic 

heritage and current environment, factors of ACDs also include epigenetics mechanisms and past 

exposure. ACDs encompass more than 90 diseases with the most important in term of incidence and 

mortality being cardiovascular diseases (CVD), cancer, Alzheimer’s diseases (AD), and type 2 diabetes 

(T2D)2,3. ACDs are interconnected, i.e. one can be a risk factor of another (for example type 2 diabetes 

with cardiovascular diseases4) and share common features still important gaps remain in our 

understanding of ACDs etiology. I will present in this thesis how genomics approaches help us identify 

factors involved disease etiology focusing on T2D and AD, two major ACDs that I have been studying.   

I.1.a. Type 2 diabetes 

Type 2 diabetes (T2D) is a form of diabetes characterized by a hyperglycemia caused by a 

relative lack of insulin secretion by pancreas on a context of age and obesity associated insulin 

resistance. It is diagnosed by blood test if during two occasions fasting plasma glucose is over 7mmol/L 

or if plasma glucose is over 11.1 mmol/L two hours after a glucose tolerance test. One major risk factor 

of T2D is obesity, still evidence support strong genetics and epigenetics influences. T2D is responsible 

for severe complications such as heart disease and stroke, with half of diabetic people dying from CVD 

but will also impact eyes, kidneys, and nerves leading blindness or amputation5. With the increasing 

aging population in both wealthy and low income/middle-income countries, according to WHO  

diabetes will be the seventh leading cause of death in 20305,6. 

I.1.b. Alzeihmer’s disease 

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuronal 

degradation in the brain associated with memory and cognitive loss. Even if the definitive diagnosis 

can be performed only after brain autopsy, cognitive test and PET scan help to have a clinical diagnosis 

of the disease. It is the cause of 60–70% of cases of dementia and are one of the major causes of 

disability and dependency among older people globally. First symptoms are short term memory loss 

and inability to acquire new information as the results of the reduce neuronal plasticity7. Cognitive and 

motor function progressively decline after years as the consequence of neurotoxic aggregates 
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spreading across the brain. While the causal mechanisms remain poorly understood, several 

environmental and genetics factors increase the risk to develop AD. A major genetics risk is APOE4, 

found in ~60% of AD career, while in 15% of the global population8,9.  

I.2. What is Genomics? 

Genomics is a recent field in biology corresponding to the study of biological mechanisms at 

genomeA wide level rather than at gene level. Genomics study the genetics information encoded in 

DNA of an organism, their interrelations and influence on the organism. Compared to previous 

targeted approaches, genomics allows the unsupervised discovery of genes or other molecular 

elements involved in a physiological or pathological condition. In the context of ACDs, which are 

polygenic diseases, i.e.  their development is dependent on several genetics risks, genomic research 

comes into its own to decipher these different genetics factors and interaction. It initiates through the 

development of high-density DNA micro-arrays 25 years ago allowing the simultaneous interrogation 

of thousands of genes10. Then, high-throughput sequencing rapidly emerged enabling measurement 

of millions of genetics element in one assay 11. Several ‘omics’ field are derived from genomics focusing 

on a downstream or parallel molecular layer, including transcriptomics, studying RNAs, epigenomics, 

studying the epigenome, or proteomics, studying proteins. However, advance in the specific field 

largely depend on the technology available and our ability to analyze them. In this thesis, I will mainly 

focus on genomics, transcriptomics and epigenomics approaches. 

I.2.a. Transcriptomics 

Transcriptomics study the set of RNAs produce by a cell or a population of cells in a given 

condition. The gene expression profile, i.e. the transcriptome, is tissue or cell type specific allowing 

specific proteome expression and therefore cellular activity. Because RNAs, compared to proteins, can 

be easily isolated and sequenced, transcriptomics analysis is a method of choice to study these cellular 

activities or assess role of genes in physiological or pathological conditions. This is one of the most 

used approaches in functional genomics, studying the role of genes in an organism, because of its 

mature technologies and wide application in fundamental or translational studies. They are essential 

to study the functional impact of a disease in a tissue/ cell type, as well as deciphering the cellular 

response to a treatment, useful notably for drug screening or understand drug resistance 

mechanism12–14. They are also commonly used in combination with microarray-based genotyping to 

study tissue specific impact of genetics variants on gene expression (known as eQTL for expression 

Quantitative Traits Locis). The latter are largely used to investigate the putative impact of risk loci on 

                                                             
A The genome is all genetics information of an organism or a population. 
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gene expression at tissue / cell type level and thus give biological insights on genetics risk and diseases 

mechanisms 15. The main transcriptomic approach was DNA microarray, but was now largely 

outperformed by RNA sequencing (RNA-seq), allowing unsupervised assessment of gene expression 

profile in a tissue or in immune-phenotypically defined cell type. 

I.2.b. Epigenomics 

 The epigenomics approaches allow the study of the epigenome. Epigenetics mechanisms are 

critical aspect in multicellular organism to allow cell specialization and identity. Epigenetics mean 

‘above’ genetics,  and was  first conceptualized by Conrad Waddington in 1956, when he succeeded to 

demonstrate inheritance of characteristic in a population in response to an environmental stimulus16, 

showing existence of mechanism of inheritance ‘above’ standard genetics. What is consider as 

“epigenetics” has largely evolved since then. Even if is still debated, it can be defined as “all molecular 

or structural change that stably regulate expression of genes without altering DNA sequence”. They 

are for the most part stable across cell division, allowing cell identity, differentiation and related 

specific gene expression profile. They allow also cells to adapt to a specific environment and can 

therefore testify about past environmental exposure with long term functional consequences on cell 

activity. Therefore, they have a central role in disease susceptibility by mediating the long-term 

consequences of current or past exposure.  

In the DNA landscape, epigenetics mechanisms mainly include the CpG methylation and 

histone marks modification (e.g. specific lysine acetylation or methylation of histone tails) which, by 

their coordinated remodeling regulate chromatin accessibility to DNA-binding protein like 

transcription factors (TFs), and activity of the transcriptional machinery leading to the control of gene 

transcription. Epigenetics mechanisms can also, depending on the definition, include non-coding RNA 

activity like miRNAs, which targets specific coding transcripts, and regulate their expression by 

reducing their stability (figure 2). 

I.2.b.i. DNA methylation 

Cytosine, by their chemical structure, can be methylated in the 5th position of the pyrimidine 

ring, forming 5-Methylcytosine, or 5mC. In mammals, this methylation mainly occurs in the CpG 

context, a cytosine followed by a guanine. Transfer of methyl group to Cytosine is catalyzed by DNA 

methyltransferase (DNMT) enzymes DNMT1, and DNMT3 family. DNMT1 is responsible of maintaining 

DNA methylation pattern across cell division. DNMT3 family, including DNMT3A and DNMT3B are 

involved in de novo DNA methylation. Around 75% of CpG are methylated across the human genome17 

. Due to their chemical resemblance with Thymine, they can mutate by error during replication, which 

have led during evolution to a global CpG depletion. However, certain CpGs rich region have been 
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conserved, called CpG island which have an important role in regulating transcription. They are mainly 

un-methylated and located in gene promoter regions. Methylation of CpG island has been shown to 

repress transcriptional expression through two putative independent mechanisms: i) the physical 

constraint to the transcriptional machinery18, and ii) the recruitment of methyl-CpG-binding domain 

proteins (MBDs) which can recruits others epigenetics modifiers like histone modifiers, leading to 

chromatin conformation change19. DNA methylation also plays a key role in repressing transposable 

elements and are found in gene body of highly transcribed genes where they could regulate splicing 

and repress activity of cryptic intragenic transcriptional units20–22 . Outside of promoter and gene body 

region, DNA methylation could have a TF and context dependent role in promoting or repressing the 

TF binding in cis regulatory element like enhancer23 . The main approach to study DNA methylation is 

genome wide DNA methylation microarray, assessing methylation in hundreds of thousands of CpG 

sites at genome scale, but approach based on sequencing are also widely used especially to study more 

targeted regions or focus on a specific population or disease model. 

I.2.b.ii. Histone modification 

DNA roll up on nucleosomes formed by complexes of proteins called histones, that allows for 

compaction of the DNA pellet. Several posttranslational histone modifications can alter their affinity 

to DNA modulating its accessibility to transcriptional machinery. Epigenetics modification of histones 

are cell type specific and are mainly involved the acetylation or methylation of lysine located in the 

histone tails. Histone marks are regulated by different epigenetic modifiers enzyme and structure the 

epigenetics landscape. Each histone modification has a specific role, allowing specific epigenetics 

readers recruitment and thus regulatory activity24–26. For example, H3K27ac (acetylation of the Lysine 

in the 27th position of the Histone H3) are enriched in enhancer allowing their activation. H3K4Me3 are 

enriched in promoter and activate transcription, while H3K9Me3 repress them. H3K36Me3 are 

enriched in gene body of transcriptionally active gene. These histone marks are remodeling through 

differentiation allowing cell specific chromatin profile and associated transcriptional program. 

Different consortia were created aiming to generate cell type specific epigenomics data to better 

understand genomics context, like the Roadmap Epigenomics Program which regroup more than 2800 

cell type specific epigenomics data27. The main approach to study histone marks profile is ChIP-

sequencing (ChIP-seq) combining Chromatin ImmunoPrecipitation (ChIP) and high throughput 

sequencing. 

I.2.b.iii. Non coding RNAs 

Non-coding RNAs include all RNA, which are not translate into protein. They principally 

regulate or modify expression of protein coding RNAs but can also have a direct role in cells activity. 

The main non-coding RNAs regulating protein-coding gene expression are miRNAs and long non-coding 
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RNA (lncRNA). Micro-RNAs (miRNAs) are single stranded RNA of about 22 nucleotides that regulate 

gene expression through RNA silencing. MiRNA is complementary to a sequence of the targeted gene 

allowing its binding to the mRNAs and that silenced its translation. About 2000 miRNAs were identified 

in the human genome and have been shown to regulate 60% of the human coding genes28–30 . lncRNAs 

are non-coding RNA with size greater than 200pb and have diverse activities, including regulation of 

gene transcription, epigenetic marks regulation, and post transcriptional regulation. The most known 

lncRNA is Xist, which inactivate the 2nd X chromosome in female placental mammals through 

irreversible chromatin modifications31. Non-coding RNAs can be studied using (deep) RNA sequencing, 

but microarrays also exists, allowing notably to profile miRNAs in large cohorts, even if suffer from 

quantification issues32. 

 

Figure 2 :  Different type of epigenetics mechanisms. Source B  

 

I.3. Genomics technologies and studies 

I.3.a. DNA microarray to perform genomics studies in large cohort  

I.3.a.i. Principle 

First prominent genome wide assay was based on DNA microarray, allowing interrogating of 

thousands of genetics elements in one assay. DNA microarray has largely evolved since its birth in the 

90’s33, but principle remain similar: thousands of oligonucleotides are bound to a surface and used to 

measure relative concentration of labeled nucleic acids. These measures are allowed thanks to the 

complementary sequence hybridization and subsequent quantitative detection of hybridization 

                                                             
B https://www.hematology.org/research/ash-agenda-for-hematology-research/epigenetic-mechanisms 
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events. Recent microarrays are based on microbeads cover by multiple copies of an oligonucleotide 

probe, which span hundreds of thousands of microwells, link to optic fibers allowing fluorescence 

detection. Today, microarrays are still largely used for genotyping allowing genome wide association 

studies (GWAS) or to profile DNA methylome in large cohort allowing epigenome wide association 

studies (EWAS).  

I.3.a.ii. GWAS and genetics risk 

Genome wide association studies (GWAS), study association between genetics variant and a 

phenotypic trait. GWAS used large cohort of case (possessing the certain phenotype/disease) and 

control individuals with genome wide assay to associate genetics variants to the specific trait.  They 

allow identifying variants, and by extension genes, involved in a multifactorial /polygenic disease like 

ACDs.  

For example for T2D, 245 independents variants and 18 putative causal genes have been 

identified in the most recent meta-analysis of 32 GWAS34. This study has highlighted how increases 

sample size and variants diversity affects discovery of causal T2D risk alleles, giving then new insight 

into the T2D genetics mechanisms as well as clinical benefits.  For AD, the most recent meta-analysis 

have identified a total of 75 risk loci and around 100 putative causal genes, with strong enrichment for 

genes express in immune related tissues, and lipid related processes35 .  

While GWAS are important to identify genes involved in the disease and to estimate individual 

genetics susceptibilities, they do not, or only partially, take into account the environmental and 

epigenetics component in diseases development.  Age, BMI, and sex are often the only environmental 

factors integrated in GWAS model limiting ability to find gene-environment interactions. Other 

limitations are that GWAS discovery is generally limited to frequent variants (>5% minor allele 

frequency; MAF) present in genome wide array (typically 1.8M variants with the 6.0 affymetrix array), 

but methods are used to impute genotype for variant with <1% frequency in population. Furthermore, 

the power of GWAS is highly dependent to cohort size. To tackle this limitation, meta-analysis of 

several GWAS is frequently performed, and more and more studies tend also to assess the variant-

variant or gene-gene interaction on disease risk using notably polygenic risks score (PRS), which can 

considerably increase discovery power and highlight multigenics effect on diseases development36–38. 

In addition to identify genetics risk and genes involved in diseases, GWAS allow also to assess 

causality between two traits using mendelian randomization. Mendelian randomization studies 

leverage the fact that genetics variants are randomly distributed across the population to assess effect 

of one trait (e.g. blood cholesterol level) on another (e.g. having T2D). They used for that genetics 

variants influencing the first trait (e.g. genetics variants reducing blood cholesterol) to assess if 
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individuals carrying such genetics variants have less or more risk to have the second trait (e.g. having 

T2D). For example, for AD, GWAS have allow the study of the causal relationship between cognitive 

related traits and AD, as well as identified a protective effect of cognitive ability and educational 

attainment on AD risk39.  However, such studies are limited by the availability of GWAS of the putative 

causal traits as well as presence of enough independent causal genetics variants in the population. Yet, 

to validate the causality of an environmental or (epi)genetics variable, interventional studies are 

needed such as randomized controlled clinical trial, in vitro studies and/or in vivo models. 

I.3.a.iii. EWAS and epigenetics mechanism 

Epigenome wide association studies (EWAS), accordingly to GWAS, study the associations 

between epigenetics factors and a phenotypic trait. Most of the EWAS are based on genome wide DNA 

methylation assay, interrogating association between CpG methylation site and disease. This is 

typically performed thanks to methylation microarrays, like the Infinium MethylationEPIC 

interrogating 850k methylation sites. These studies aim to identify disease related epigenetics 

biomarkers and associated biological pathways. For example, in T2D, EWAS on CD4+ T cells has allowed 

the identification of a CpG methylation within the ABCG1 gene associated with blood insulin and insulin 

resistance40 . In peripheral white blood cells, 798 CpGs were associated with insulin resistance41. In a 

study of obesity, EWAS have found HIF3A methylation in adipose tissue and blood cells, and SOCS3 

methylation in blood cells, as the most obesity associated genes methylation42,43. In AD brain, cross 

cortex meta-analysis of EWAS study have found 220 CpGs methylation associated with neuropathology 

targeting 121 genes44,45 . Some of these association are brain region specific with notably CpG sites link 

to ABCA7 gene and HOXA5/HOXA3/HOX-AS3 cluster in the superior temporal gyrus region, while CpG 

sites link to MCF2L gene in the inferior frontal gyrus region.  

I.3.b. High throughput sequencing for unsupervised discovery 

I.3.b.i.  History of DNA sequencing  

The first method to sequence DNA was developed by Frederick Sanger and colleagues in 

197746. The original Sanger method relied on an in vitro targeted DNA replication of a DNAs sample, 

using an oligonucleotide primer, a DNA polymerase, classical deoxynucleotides (dNTPs), and a small 

amount of a modified dideoxynucleotide (ddNTP). Before the DNA replication, DNA sample is divided 

into 4 separate reactions to incorporate one of the 4 ddNTPs (ddATP, ddGTP, ddCTP, or ddTTP) that 

when incorporated into the nascent DNA strand block the new strand synthesis and generate a panel 

of single strand DNA fragments of different size, which can then be separated by electrophoresis. The 

DNA bands are then visualized using classical autoradiography or UV methods and the DNA sequence 

of the interrogated genomic region is determined based on these bands (figure 3). Derivatives of this 

method are still used today because of its very low error rate 47. 
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Figure 3 : Revelation of DNA sequence using the Sanger method. Radioactively labelled 

gel electrophoresis of the four reactions containing either d dATPs, ddTTPs, ddGTPs, or  

ddCTPs blocking DNA elongation when integrated. Source C  

This method was used through the Human Genome Project. This unique initiative launched in 

October 1990 and completed in April 2003, aimed to sequence the entire human genome costing 

around 3 billions of dollars48. Currently, a whole genome can be sequenced in one day for an 

approximate cost of ~1000$ 49. This new generation sequencing (NGS) technology, also called high-

throughput sequencing, are now largely used across scientific community with various application in 

genomics, epigenomics and transcriptomics research.    

I.3.b.ii. Principle of high throughput sequencing 

Several high-throughput sequencing methods exist but the widely used are synthesis-based 

method, as the one developed by Illumina 50. They allow sequencing of hundreds of millions of DNA 

fragments of 100-300 bp in a massively parallel way. NGS is used for a variety of applications including 

the whole genome sequencing (WGS), the transcriptome sequencing (RNA-seq) and the epigenome 

sequencing (Bisulfite-Seq or ChIP-seq). For RNA-seq, a preliminary step of retro-transcription is 

necessary to convert RNA into DNAs. 

The method consists of 4 steps: the DNA preparation, the clusters generation in a flow cell, the 

sequencing by synthesis, and the sequence mapping on a reference (figure 4). The DNA preparation 

include the DNA fragmentation into 100-300pb fragment and ligation with adaptors including 

                                                             
C https://upload.wikimedia.org/wikipedia/commons/c/cb/Sequencing.jpg 
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sequence allowing hybridization on the flow cell and sample indexing. These fragments are hybridized 

on a flow cell coated with billions of oligonucleotides primers and amplified by polymerase chain 

reaction (PCR) generating clusters of copy of a same DNA fragment. Similarly to what is done by Sanger 

the sequencing by synthesis relies on nucleotide-by-nucleotide synthesis of the complementary strand 

of the amplified DNA fragments. This synthesis is based on cycle of 3 steps. A mix of dATPs, dGTPs, 

dCTPs and dTTPs chemically modified to contain a specific fluorescent tag, which block integration of 

subsequent dNTPs. The polymerase adds one of this modified dNTPs to the nascent strand, which block 

the synthesis (i). Then, the nature of the nucleotide newly integrated is determined by reading the 

fluorescence (ii). Finally, the fluorescent tag is removed from the new nucleotide (iii), and the synthesis 

can continue (step i), until the defined number of cycles wanted (typically 100 or 250pb). The 

fluorescence is read simultaneously for all clusters at each cycle generating finally the composition of 

nucleotides of hundreds of millions of fragments simultaneously. These millions of sequences, called 

“reads” are then aligned on a reference genome or transcriptome depending on the usage, and allow 

variety of downstream analysis including mutation analysis, gene expression measurement, DNA 

methylation and histone marks profiling according to the assay/ starting material. 
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Figure 4: Workflow of sequencing by synthesis method. Reprinted from "Next 

Generation Sequencing (Illumina)", by BioRender, June 2020 D  

The main advantage of NGS compared to microarray-based assay are their ability to measure 

a genetic information in an unsupervised way. This allows the identification of new biological features 

in genomics and related research.  

I.3.b.iii. Whole genome sequencing to discover new mutations 

Whole-genome sequencing (WGS) allow the detection of new or rare variants that are not 

present in microarrays. An alternative of it is whole-exome sequencing (WES), targeting coding region 

to increase discovery power of diseases-associated rare variants, which are likely to have greater 

impact on genes function. 

 For GWAS needed large cohort, this is quite rare to use WGS/WES because of their cost and 

amount of data produced. However, some studies have done this effort to understand contribution of 

rare variant in ACD inheritability. In a study focusing on its question for T2D, no evidence of significant 

contribution of rare variants was found explaining T2D inheritability51 . To contrast, a recent WGS 

based GWAS have found two novel AD associated genes region, DLG2 and DNTB. These AD associated 

genes region was found thanks to association with rare variants using a sliding window approach across 

the genome52 . 

Beyond inherited genetics variants, WGS can also be used to identify somatic mutations. 

Somatic mutations are DNA mutation within non-germinal cells due to DNA replication error or 

incorrect DNA repair. It’s estimated to occur at a rate of 2-10 mutations per diploid genome per cell 

division53 leading to mosaicism within each individual, i.e. cells of an organism will not have the exact 

same genomic information. Using a greater sequencing depth, somatic mutation can detected using 

WGS, which can be helpful for ACDs research.  Indeed, somatic mutation is a well-recognized factor in 

cancer53 but play also an important role in others ACD54,55. For example, somatic-mutation-driven 

clonal hematopoiesis and clonally expanded chromosomal alterations in blood was associated with an 

increased incidence of CVD and T2D54,56,57 . The causal role of somatic-mutation-driven clonal 

hematopoiesis has been functionally validated for one of them, the TET2 loss-of-Function mutation, 

which drive clonal hematopoiesis while aggravate insulin resistance in aged mice and in obese mice58. 

In brain it was shown that neuronal somatic mutation increase with age and are associated with  

neurodegenerative disorders55,59. Putative deleterious somatic mutations was found  in 27% of AD 

brains and particularly enriched for genes contributing to AD pathogenesis59.  

                                                             
D https://app.biorender.com/biorender-templates/figures/all/t-5ef134a11c72b100ad8d13ac-next- 
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I.3.b.iv. Functional studies using bulk RNA-seq 

Bulk RNA-sequencing (RNA-seq) can assess the entire genes expression profile (i.e. the 

transcriptome), of a tissue or a cell type, permitting to characterize tissue specific genes activity but 

also disease associated gene expression. To do so, RNAs are isolated from a mix of cells from a tissue 

or a cell line, and retro transcripts into cDNAs for NGS based sequencing.  It was used to build atlas of 

tissue expression in differents species60–62 , notably in human with the Genotype-Tissue Expression 

(GTEx) project63,64   or with the Human Protein Atlas program65. Furthermore, RNA-seq is also widely 

used as first approach to assess impact of a disease in a tissue. It allow to identify differentially 

expressed genes (DEGs) in the diseases condition compared to an healthy control condition, 

highlighting putative biological process or signaling pathways altered or involved in the disease.  It is 

also the primary analysis to identify function of gene in physiological or pathological conditions. 

Indeed, RNA-seq is also used in first approach to assess the functional impact of modifying or deleting 

a studied gene in a specific tissue.   In ACDs research, RNA-seq data are also useful to assess impact of 

a genetics variant on gene expression, either through eQTL studies66 (see part I.3.a) or direct in vitro/in 

vivo characterization using genome editing methods67 (see part I.4). RNA-seq can also be used as 

readout in drug screening study14,68. Drug screening employ a large bank of drugs or molecular 

compound to characterize impact of these compounds on cells, which can be used for drug discovery 

or drug repositioning. This approach was largely used for personalized cancer treatment69 , but similar 

strategies was also deploy for AD 70. Then, RNA-seq have broad application and was therefore a major 

advance in functional genomics research. However, the major drawback of this technique if the lack of 

the cellular heterogeneity consideration that we will discuss in next parts. 

To note, RNA-seq is also used for epigenomics studies, because having the ability to detect non 

coding RNA, notably miRNAs that are important in diseases mechanisms and are promising circulating 

biomarkers71–73. 

I.3.b.v. Sequencing based epigenomics studies 

High throughput sequencing is also largely used to characterize the epigenome, its dynamics 

across tissue and diseases and its ability to regulate gene expression. The main methods to investigate 

epigenome using NGS is Bisulfite seq, ChIP seq, and ATAC-seq.  

Bisulfite-Seq allow whole genome DNA methylation profiling in a tissue. It is based on bisulfite 

treatment of DNA followed by sequencing. Bisulfite treatment convert non-methylated cytosine into 

thymine, allowing segregation of methylated Cytosine from unmethylated Cytosine by sequencing. 

However, this technic requires a large amount of DNA material so is difficult to perform if the starting 

cells number are limited74.  
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ChIP-seq allows genome wide Histone marks profiling but also profiling of DNA binding 

proteins on DNA. It is based on the immunoprecipation of chromatin using specific antibody followed 

by sequencing. Briefly, DNA and DNA binding proteins are first cross-linked using formaldehyde and 

DNA are randomly fragmented using restriction enzyme or DNA sonication. Then, DNA fragments 

containing histone marks or TF are pull down using an antibody recognizing this specific histone 

marks/TF (this is, chromatin immunoprecipation, or ChIP). These fragments are then sequenced and 

mapped onto a reference genome similarly to others high throughput sequencing based assay.  As for 

Bisulfite-seq, ChIP-seq requires a large amount of DNA material (i.e. cells) to conserve enough material 

after treatment with formaldehyde, DNA fragmentation, and Immunoprecipation.  

ATAC-seq is focused on profiling open chromatin regions, which are marks of active genomic 

regions. ATAC is for Assay for Transposase-Accessible Chromatin. ATAC-seq assay use a hyperactive 

mutant transposase Tn5 enzyme, which has the ability to cut and tag accessible DNAs, producing 

labeled DNA fragments which can then be amplified and sequenced.  

Epigenomics assay using sequencing has allowed the discovery of several epigenetics 

mechanisms involved in ACDs.  Bisulfite-seq has notably highlighted that aberant DNA methylation 

often occurs before cancer development, induced by different life events including acute infection, 

chronic alcohol consumption, or dysregulated inflammation, and can persist throughout all the lifetime 

of an individual, even if the carcinogenic factor is no longer present75–78. This approach has also showed 

the important role of DNA methylation as an alternative way to silence tumor suppressor genes, 

similarly to genetics. Such genome wide methylated DNA sequencing has also allowed to identify 

important methylation differences within T2D discordant monozygotic twins, with the stronger change 

being in MALT1 locus, a gene regulating insulin and glycemic pathway79. ChIP-seq has allowed the 

discovery of “super-enhancer” regions in cancer, regions enriched in H3K27ac histone mark allowing 

stable oncogene activation80,81. In AD, such analysis has identified that H3K27ac and H3K9ac marks 

correlate with upregulation of chromatin and transcription related genes and contribute to amyloid-

β42-driven neurodegeneration82. H3K9me3, mediating heterochromatin condensation, was also found 

enriched in AD brains, leading to downregulation of proximal genes mainly involved in synaptic 

transmission and plasticity83. This assay has also identified that hyperglycemia led to important histone 

acetylation changes in specific genomics regions, which are associated to persistent expression of 

proinflammatory genes84,85. Such epigenomics tools give us a new understanding of diseases 

development. However, to assess functional consequences of such epigenetics remodeling, 

integration with different omics layer is needed. 

I.3.c.  Multi-omics integration for functional characterization 
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Studies focusing only at one specific biological layer (genetics, RNA, DNA methylation, histone 

marks) limit considerably the understanding of biological or diseases mechanisms. Disease 

development relies on a complex biological system, necessitating the integration of multiple layers 

(multi-omics) to highlight interactions between them bringing substantial new insights in our 

understanding of the molecular mechanisms involved.   

I.3.c.i. Quantitative trait loci (link genomics with other layers) 

To measure the influence of genetics variants on gene expression or other biological variables, 

quantitative trait loci (QTLs) studies are performed. Expression Quantitative Trait Loci (eQTLs) studies 

look for associations between genetics variant and expression levels of mRNAs in a tissue. They are 

mainly cis-eQTLs studies, i.e. considering genes in relatively close proximity of the genetic variant 

(typically in a 1 Mb window). They allow to identify in some extent the ‘proximal’ regions able to 

regulate expression of genes, i.e. cis-regulatory elements (CREs) such as promoter and enhancer. To 

contrast, trans-eQTL studies looked at association between genetics variants and gene expression with 

more than 1 Mb distance or from different chromosome. They are performed to identify distant 

association, which can reflect indirect influence of a variant on gene expression, for example the 

impact of a TF variant on TF downstream target genes expression. However, these analyses require 

significant analytical resources to perform extremely large number of test (1.8M variant on classical 

array multiply by 20k human genes = 36 billions of test), increasing considerably false discovery rate 

and power discovery. Targeted or variable selection methods are thus required to effectively identify 

significant association.  The tissue specific human eQTLs reference is the Genotype-Tissue Expression 

(GTEx) project, which aim to build a reference database of human tissue specific gene expression and 

regulation regrouping transcriptomic data and eQTLs analysis from nearly 1000 individuals across 54 

healthy tissues. However they suffer from some bias of sampling because mostly based on postmortem 

tissue expression of aged or intoxicated individuals so others initiative have been led notably the 

Roadmap Epigenomics Project27, aiming to have more representative tissue wide datasets. 

Cis-eQTLs are used in complement of GWAS to functionally characterize disease risk loci, 

linking them to a gene with putative tissue specific impact. Some eQTLs studies have been designed to 

specifically characterized  ACD related regulatory link and involvement of genetics modifications in T2D 

and AD molecular mechanims70,86. In T2D, a study analyzed genomics and transcriptomics data from 

112 islet samples associated with ATAC-seq based chromatin profile and showed that T2D risk alleles 

were enriched in islet specific enhancer and disturb the islet Regulatory Factor X (RFX) activity86 . In 

AD, a study regrouping 364 donors has characterized thousands of molecular changes and neuronal 

gene subnetwork associated to AD neuropathology or severity70. While having great interest to 

discover tissue specific role of non coding region in gene expression regulation, eQTL discovery can be 
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limited because it requires a large number of statistical tests (one by putative variant-gene 

association). This number of tests reduces the statistical power of discovery, then a large population is 

needed to identify significant association after p-value correction for multi testing.   

Other QTLs study can be performed, including methylation Quantitative Traits Loci (mQTLs), 

deciphering role of genetics variants in DNA methylation landscape87. 

I.3.c.ii. Others multi-omics integration (associate epigenomics with transcriptomics..) 

Omics integration is not limited to QTL studies. Others association between different 

regulatory layers can be study to decipher molecular mechanisms behind a phenotype or a diseases 

development. Different methods exist to integrate multiple omics layer. These methods try to find 

correlation between these layers either with an unsupervised or supervised approach88 .  Most 

frequent omics integration are DNA methylation with gene expression, or chromatin accessibility with 

gene expression, giving insight into epigenetics influences on gene expression but also gene regulatory 

network involved in physiological or pathological processes. 

Epigenomic and transcriptomic data integration allows to correlate epigenetics change to gene 

expression to better understand functional consequences associated to epigenetic changes. This 

analysis can be named expression Quantitative Traits Methylation (eQTM) analysis in reference to 

eQTLs. Several DNA methylation and gene expression correlation have been found within T2D. For 

examples, DNA methylation of the insulin promoter and the PDX-1 gene were shown to be associated 

with reduced insulin expression and increased HbA1c levels in pancreatic islet of T2D patients89 . In AD, 

integration of DNA methylation and gene expression in multiple brain regions has allowed the 

discovery of genes epigenetically regulated in AD including ANKRD30B as well as several genes related 

to immunity and calcium homeostasis (figure )90.  

Others multi-omics integration can give insight into diseases development, including integration 

of gene expression with miRNA profile, histone marks, but also metabolomics or microbiota (i.e. 

metagenomics)91,92.  This multi layers integration allows to characterize the whole molecular network 

involved in a specific phenotype (Figure 5). In AD brains, integration of transcriptomic, proteomic and 

epigenomics data have contributed to the identification of major epigenome reconfiguration including 

increase H3K27ac and H3K9ac associated to upregulation of concordant genes regulating transcription 

and histone marks as well as AD related pathways82. In addition to better understand disease 

mechanism, it was shown that multi-omics integration allows better patient stratification, diseases 

subtyping, and give insight into diseases subgroup specific molecular signatures93,94 . For examples, 

integration of methylation, gene expression, and miRNAs has allowed to identify a set of multi-omics 

biomarkers associated with subtype of prostate adenocarcinoma with high risk of recurrence 91. In AD, 
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proteomics, metabolomics, and lipidomics integration of cerebrospinal fluid in healthy and AD brain 

with different cognitive severity has identified new central nervous system pathway alteration in AD 

and contributed to a better AD prediction and associated cognitive decline based on four multi-omics 

molecular markers 95.  

 

  

Figure 5 : Advantage of integrate multi -omics layer to characterize molecular network 

involved in a phenotype. Reprinted from Hossain et al , Frontiers in Plant Science , 2015 E   

I.4.  (Epi)genetics editing tools 

Most of the findings in genomics studies are associations between two variables (e.g. a CpG 

methylation and a disease). However, association does not imply causality. Even if some statistical 

approaches are being developed trying to infer causality, including mendelian randomization discussed 

above, they are limited on the availability of genetics influences on the studied variable. Then, to help 

decipher causality of gene or (epi)genetics element, we used interventional studies using molecular 

biology tools. (Epi)genome editing tools are widely used in functional genomics for this purpose. They 

allow to specifically target a gene or an (epi)genetics element in order to characterize its function. In 

combination with RNA-seq or others genomics approaches cited above, these are un unsupervised way 

to assess the role of a gene or an (epi)genetics factors in biological or diseases related processes. 

                                                             
E https://www.frontiersin.org/articles/10.3389/fpls.2015.00363/full 
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I.4.a. Gene perturbation 

Since emergence of molecular biology, several tools have been developed allowing us to 

perturb expression of a gene. Gene silencing using small interfering RNAs (siRNAs), pharmacological 

inhibitors, gene transfection using plasmid vector, and CRISPR based gene editing, are the main 

approaches to study the role of a gene and the associated downstream mechanisms and functional 

consequences. 

siRNAs allow knock down (KD) of specific gene expression using RNA-induced silencing 

complex (RISC) cellular machinery. siRNAs, designed to be complementary to a specific mRNA region 

(mostly the 3’ end untranslated region), is integrated in the cell by RISC and allow specific mRNA 

binding and cleaving. It is mostly used for transitory downregulation of expression but can also be 

stably transfected if using short hairpin RNA (shRNA) system. Pharmacological inhibitors are 

synthetized compound with a specific molecular structure, which, by resembling to natural substrate 

or ligand of an enzyme or receptor will interfere with the protein activity. Specific pharmacological 

inhibitors can be difficult to synthetized and can have off target effect limiting their application. Gene 

transfection using plasmid vector or lentivirus is used to induce expression of an exogenous gene in a 

cell. This approach is interesting to study the impact of gene overexpression or a specific mutation but 

can have limited physiological relevance.  

To increase physiological relevance, genome editing methods are used96. Rather than adding 

an exogeneous gene, they allow to modify sequence of the endogenous gene or genetic element. 

These methods mostly used targeted DNA double strand break (DSB) and endogenic homologous 

recombination-based DNA repair processes to edit genome(Figure 6). First methods developed used 

fusion protein composed of nonspecific DNA cutting domain coupled with specific DNA sequence 

recognizing peptides like Zinc finger nucleases (ZFNs) or transcription activator-like effectors (TALEs) 

allowing targeting DNA cutting. Because they are based on specific fusion protein design, these 

methods are relatively complex to set up requiring significant molecular biology skills and time. In the 

past 10 years, a new genome editing tool emerged, bypassing this limitation using only a small RNA 

(called sgRNA for single guide RNA) to guide the DNA breaking by endonuclease. This tool is called 

CRISPR-cas9 and became rapidly the gold standard method. This method is based on CRISPR (Clustered 

Regularly Interspaced Short Palindromic Repeats), a genetics element used by bacteria to fight against 

viruses. CRISPR technics allow targeting of specific DNA element thanks to a DNA endonuclease 

enzyme, most of the time Cas9, guided by an easily customizable sgRNA. Cas9 can be 

catalytically active allowing DSB  but also partially or completely inactived (dead Cas9, or dCas9) 

depending on the DNA modification desired. CRISPR based system allows specific modification of 
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genomics sequences for gene knock-out (KO) or knock-in (KI) but can also be used for various other 

application when using a modified version of the system (Figure 7). For example, gene silencing (called 

CRISPR interference, or CRISPRi) can be performed with such assay by using Cas13 instead of Cas9, an 

enzyme that targets RNA instead of DNA.  

 

Figure 6 : Principle of major genome editing methods. Reprinted from Adli, Nature 

Communications, 2018 F  

I.4.b. Epigenetics editing 

In the same way than genome editing, some epigenetics editing method have been developed 

to study role of epigenetics elements. For DNA methylation, epigenetics drugs like S-Adenosyl 

methionine (SAM), the principal substrate of methyl group transfer can be used to modify DNA 

methylation but does not allow for targeted epigenetics modification . To get a targeted epigenetics 

editing, most promising approaches used the CRISPR system. They used inactivated Caspase like dCas9 

coupled with epigenetics modifiers catalytic domain to edit specific chromatin marks. Notably, several 

                                                             
F https://www.nature.com/articles/s41467-018-04252-2/figures/3 
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studies have shown ability of such system to edit specific histone acetylation or methylation but also 

edit DNA methylation. However, these methods still lack robustness requiring further development. 

 

Figure 7 : Differents application of CRISPR based systems. Reprinted from Adli, Nature 

Communications, 2018 G  

I.5. Main limit of classical genomics approaches 

These genomics approaches cited above still suffered from a major gap: the consideration of 

cellular heterogeneity within a tissue.  Indeed, these genomics assays are performed in bulk, i.e. with 

a RNAs/DNAs mix from several cells. This mix of cells is performed at tissue level or using presorted 

cells based on cell surface markers. Bulk approach was required to have enough genomics material to 

perform genomics library preparation for sequencing, but lead to the loss of crucial heterogeneity 

within this cell population. Notably, the biological insight of RNA-seq based studies is limited because 

it fails to explain from which cells (subpopulation) the effect observed come from. Similar objection 

can be raised for EWAS or epigenomics study. Epigenetics influence is cell type specific, then epigenetic 

change in a cell type cannot be generalize to others but rather highlight cell type specific epigenetics 

mechanism and role in disease development. We will see in the next parts how the transcriptomic and 

epigenomics cellular heterogeneity is important in health and diseases and how its consideration in 

genomics research can give new insight into disease development, mainly focusing on ACDs. 
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II. Importance of cellular heterogeneity 

II.1. Cellular heterogeneity in multicellular organism 

Cellular heterogeneity is a key feature of multicellular organism. It allows asymmetric cell-to-

cell interactions, and emergence of complex functions and behaviors. The cell specialization relies on 

epigenetics remodeling, which give rise to a specific cell structure and activity. During development, 

this mechanism allows the formation of tissue, i.e.  grouping of cells specialized in a specific task. 

However, this cellular heterogeneity goes beyond the tissue level. Indeed, there is different cell type 

and cell states in each tissue allowing regulation of tissue functions. Cellular heterogeneity is even 

found within a same cell type according the cell cycle phase, the micro-environment, the cell to cell 

communication, but also according to somatic mutation and epigenetics mosaicism as seen in normal 

aging. Furthermore, the cellular plasticity, which allow organism to adapt to environmental change, is 

also an important factor of cellular heterogeneity. Cellular plasticity is the ability for cells, to change 

their activity, or to differentiate, in response to environmental cues. Adult stem cells, located in cellular 

niche across each tissue, can differentiate to regenerate tissue following damaged or for physiological 

turnover of cells. Differentiated cells itself can be reprogrammed into another cell type, a process 

called transdifferentation, allowing further organism plasticity to environmental exposure. For 

example, astrocyte can differentiate in neurons after brain injury97,98 and white adipocytes can 

differentiate in brown adipocyte following cold exposure99. Then, accounting for intra-tissue 

heterogeneity in our genomics approaches appears crucial to better understand the biological system 

and how its dysregulation can lead to diseases development (Figure 8).  
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Figure 8: sources of cellular heterogeneity within a tissue. Reprinted from Sun  et al ,  

Acta Pharmacologica Sinica, 2015H   

 

II.2. Cells heterogeneity alteration in diseases 

Several evidence support the role of cellular heterogeneity or plasticity alteration in the early 

development of ACDs. Notably, the stem cells heterogeneity alteration is an important hallmark of 

aging and contribute to ACDs risk . This stem cells heterogeneity alteration is mainly driven by the 

clonal expansion of defective stem cells across time. Indeed, as exemplified in hematopoiesis, somatic 

mutations and epi-mutationsI  accumulate with age according a fitness advantage to certain clone 

compared to others. Such clonality directly affects the heterogeneity and plasticity of hematopoietic 

stem cells (HSC) niches driving hematopoietic dysfunction and increasing ACDs susceptibilities54,56.  

In T2D,  imbalance between Beta cells and alpha cells in pancreas as well as Beta cells 

dedifferentiation lead to decrease insulin secretion and diabetes development 100–102. Similarly, excess 

of large size white adipocytes in adipose tissue led to obesity associated inflammation and insulin 

resistance 103. In addition to adipocytes, adipose tissue is composed of other cell types including stem 

cells, pre-adipocytes, endothelial cells, neutrophils, lymphocytes, and macrophages104 . A balanced 

proportion of these cells is closely related to the maintenance of energy homeostasis, while 

                                                             
H https://www.nature.com/articles/aps201592 
I Stochastic epigenetics alteration, like DNA hypometylation observed in aging 
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dysregulation of this equilibrium is associated with the metabolic syndromeJ. It was shown that an 

increase of adipocytes sizes, types, as well as increase in number of lymphocytes and macrophages 

infiltration contributes to the metabolic syndrome, associating a low-grade inflammatory state and 

peripheral insulin resistance104. For AD, change in brain cellular composition has been observed. 

Indeed, it was recently shown through scRNA-seq analysis that a new type of microglia appears in AD 

brain compared to normal brain and was shown to allow Abeta clearance once activated105.  It was 

difficult to assess a loss or a gain of cellular heterogeneity prior to the emergence of single-cell 

genomics, as cell type identification relied on known cell surface markers.  

An important implication of cellular heterogeneity is the ability to develop asymmetrical cell 

to cell communication essential for the organism homeostasis and tissue synchronization. This cross 

talk can be altered and played an important role in ACDs. During atherosclerosis leading to CVD, the 

inflammatory cross talk between macrophage and endothelial cells failed to resolve and lead to 

accumulation of senescent lipid rich macrophages on the subendothelial space upon rupture106.  In AD, 

defective cross talk between neurons, astrocytes and microglia appears primordial in AD pathogenesis 

especially in the Ab plaques maturation and propagation107. This cell-to-cell interaction further 

highlights the importance to consider cellular heterogeneity when studying ACDs. Considering cell to 

cell interaction adds complexity in our models but will improve identification of actionable targets. For 

example, all AD clinical trials focusing on treatment of astrocytes and microglial-mediated 

neuroinflammation have failed108 suggesting that targeting only neuroinflammation is not sufficient 

and better understanding of the cells crosstalk involved in immune cells activation is needed. Recent 

studies suggest that microglial activation could be necessary to decrease neurons dysfunction and 

amyloid beta (Abeta) accumulation105,109. Complex cellular models integrating this cellular 

heterogeneity like organoid coupled with single-cell genomics assay appear then a first choice strategy 

to decipher these cross talks. 

 

III. Single-cell genomics approaches, their interests and how to manage them 

The intra-tissue heterogeneity plays a key role in cellular homeostasis, tissue function regulation, 

and disease development but was often disregarded due to the lack of available tools to characterize 

it. The recent emergence of single-cell genomics technologies allows us to tackle this limitation. 

                                                             
J The metabolic syndrome is an obesity, T2D, CVD risk associated medical condition regrouping at least 3 over 
the 5 following strinkingly correlated metabolic phenotypes: abdominal obesity, high blood pressure, high blood 
sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL) 
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III.1. History 

Even if we can speak about single-cell “genomics” only recently with the rise of high-density 

microarray and high-throughput sequencing, technologies allowing analysis of samples at single-cell 

resolution exist since decades. In combination with staining methods microscope allows exploration 

and analyze of cells and tissues at single-cell resolution. After some centuries, modern technics 

combining molecular labelling and computational analysis have enable single-cells analysis in a more 

quantitative way. Fluorescence activated cell sorting (FACS), immunofluorescence, and RNA 

fluorescence in situ hybridization (FISH) as well as fluorescent fusion proteins are methods allowing 

quantification of gene expression at cellular level. However, these methods are limited in scale either 

on number of cells or in the number of targets explored simultaneously. The first massive parallel 

sequencer was commercialized in 2006 allowing the sequencing of the whole genome in a day. The 

genomics field then emerged and soon enables single-cell approaches. 

 In 2009 was published the first whole transcriptome at single-cell resolution110. Few years 

after, different protocols arised to isolate cells including well-based, FACS-based, and droplet-based 

assays. All these protocols are based on a similar process: a cell isolation (i), RNA retrotranscription 

adding cell specific barcodes (ii), and finally cDNA library amplification and preparation for Illumina 

related sequencing (iii). 

III.1. Principle 

Well-based assay used limiting dilution or micromanipulation to isolate one cell by well 

allowing specific barcoding of their RNAs. They allow for visualization  and confirmation of cell isolation 

process, and are classically associate to Smart-seq protocol, a RNA-seq library preparation method, 

allowing full-length whole transcriptome sequencing111. However, such methods suffer from a limited 

number of cells that can be processed simultaneously.  

Rapidly, FACS methods have been developed to reduce manipulation and time while allowing 

sorting of thousands of cells in plate. Such methods are classically associated with SMART-seq2 

protocol, an improve protocol of Smart-seq allowing also full length transcriptome sequencing but with 

greater sensitivity111,112. A specificity that allows the interrogation of gene isoforms, or alternative 

splicing. This workflow is also useful when studying exome based somatic mutation, and can be used 

to perform lineage tracing experiments, based on spontaneous mitochondrial DNA mutation 

monitoring113. However, FACS based technics still have a limited cells throughput (of about 1000 cells) 

while requiring a large number of starting materials (>100k cells to good recovery). Furthermore, such 

assay is also expensive according to the large reagent volume it requires. Indeed, the critical steps of 
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such assay, the retro transcription, the tagmentation and the PCR, are performed in each individual 

well requiring large amount of associated enzymes and buffers. 

 Since 2015, a new isolation method has emerged allowing sequencing of thousands of cells in 

one assay114. This method is a microdroplet-based microfluidics approach. It allows cell isolation 

through an oil-based emulsion of water micro droplets containing all necessary materials to perform 

retro transcription and cell resolution RNA barcoding. This design reduces dramatically reagent volume 

and cost while increasing number of cells that can be simultaneously profiled. This technic, called Drop-

seq, was then commercialized by 10X Genomics and widely used across scientific community. This 

assay is not designed to interrogate full length RNA like Smart-seq2 methods, limiting splicing analysis 

/ isoforms profiling as well as (somatic) mutation analysis. 

Regardless of the cell isolation methods applied, the principle of single genomics methods 

remains the same (Figure 9). Cells are dissociated from a tissue, and isolated to allow the cell level 

barcoding of the genomics element of interest (RNA or DNA). If single-cell RNA-seq, is performed, the 

RNA is retrotranscripted into DNA, and the resulting barcoded DNA is sequenced according to classical 

NGS workflow. After mapping reads on the reference genome, we obtain a gene expression (or 

epigenetic) profile for every cell sequenced. These profiles are then compared between sequenced 

cells to identify the different cell subpopulations present in our original tissue. 

 

Figure 9: Single-cell RNA-sequencing workflow. Source K   

                                                             
K https://learn.gencore.bio.nyu.edu/single-cell-rnaseq/  
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III.2.  Gain of resolution associated to single-cell approaches 

As seen previously, genomics assays were usually performed in bulk, i.e. from a mix of cells 

leading to a loss of cell specific information. Therefore, only giving us access to an estimate of the 

predominant features from the whole cell population failing to highlight the cell type specific features 

and associated regulatory network (Figure 10).  Bulk approaches also failed to assess if difference 

between two conditions reflects a change in cell population or a feature change within a same cell 

subpopulation which are two separate mechanisms essential to adequately understand disease 

etiology. Before the emergence of single cell technologies, the study of tissue heterogeneity was 

limited to cell surface markers-based phenotyping. Such studies are supervised relying on a limited 

number of cell surface markers chosen by researchers which is likely to affect the resolution of the 

study. With single cell genomics assay, gene or whole genome features are assessed in an unsupervised 

way allowing objective cell subpopulation definition and heterogeneity studies. Furthermore, 

molecular characterization of cell fate decision, an inherent unicellular process, was not possible with 

bulk genomics approach because only average cells states were captured. With single cell genomics, it 

is now possible to capture every cell state in the process of differentiation, allowing differentiation 

program characterization at transcriptomic and epigenomics level. Such gain of objectivity and 

resolution has already revolutionized our understanding of developmental processes and cell fate 

decisions 113,115 , but also of disease related cellular and molecular mechanisms116,117. For example, in a 

pioneer study in AD brains using single cell genomics, an AD specific microglial cell type was discovered 

(and molecularly characterized),a discovery that would not have been possible with previous 

supervised and/or bulk analysis105.  
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Figure 10: Gain of resolution obtain with single -cell RNA-sequencing compared to bulk 

RNA-seq exponentional increased of ACDs incidence with age. Reprinted from 

Steinheuer et al, biorxiv, 2021 L   

III.2.a. Single-cell transcriptomic 

Single-cell transcriptomic assay (scRNA-seq) follows an exponential trend of usage since few 

years, as illustrated by pubmed results: at the date of writing (15/08/2022) 8021 PubMed articles 

contain “single-cell RNA-seq” in their title or abstract with 2420 articles only for the year 2021 (more 

than 6  per day!).   

III.2.a.i. Tissue heterogeneity 

scRNA-seq allows the studies of cellular heterogeneity within tissue at transcriptomic 

resolution with the all transcriptome to be interrogated simultaneously in each cell increasing 

considerably the resolution in comparison of what was previously used to classify cells i.e. morphology, 

physical and chemical property, and cell surface markers where only about 40 markers can be 

interrogated simultaneously. This gain in resolution required the establishment of new reference for 

cell type definition. The Human Cell Atlas consortium (HCA) is one of these initiatives that aims to build 

a high-quality human cell atlas referring every human tissue and heterhogeneity118 at molecular level. 

These atlases could also provide insight about transcriptional program and molecular pathways 

activated in these different cell types. For example, scRNA-seq study of pancreatic islet has highlighted 

a rare population of alpha cells able to proliferate through activation of the Sonic hedgehog-

signaling119. Such finding would not have been possible with bulk RNA-seq. Furthermore, it highlighted 

putative pathway to target for alpha cells proliferation regulation. Numerous scRNA-seq studies were 

performed in brain, allowing the identification of novel neuronal or non-neuronal subtypes, with 

specific neuropeptide or receptors expression, as well as distinct transcriptional program driving 

central nervous system development120,121.  

III.2.a.ii. Differentiation process 

scRNA-seq captures cells at various differentiation levels offering the possibility to analyze the 

differentiation process at a resolution never reached before. In hematopoiesis, it was shown that the 

differentiation process from multipotent HSC to lineage restricted progenitors doesn’t followed a step 

by step process as previously modeled but rather followed a continuous process with high 

transcriptomic variability within HSC and Multipotent Progenitors (MPP) cells highlighting gene 

expression stochasticity in these cells 122,123. These scRNA-seq results further confirm previous studies 

                                                             
L https://www.biorxiv.org/content/10.1101/2021.04.02.438193v1.full 

41

https://www.biorxiv.org/content/10.1101/2021.04.02.438193v1.full


INTRODUCTION 

 

42 
 

which demonstrate the role of gene expression stochasticity in cell’s fate dynamics in multipotent stem 

cells differentiation and self-renewal balance124,125.  Furthermore, scRNA-seq analysis allows 

differentiation trajectories analysis. For example, using scRNA-seq and a graph based trajectory 

construction tool, a recent article has highlighted 56 different cell differentiation trajectories involved 

in mammalian organ development 126. Cell differentiation trajectory can also be estimated thanks to 

transcriptional dynamics across cells based on ratio between pre-mRNA and mature mRNA in each cell, 

i.e. the RNA velocity. RNA velocity analysis has notably shown unexpected transition between two 

immune cell types following severe COVID-19127 . 

III.2.a.iii. Cell to cell communication 

As described in part II, cellular heterogeneity contributes to an asymmetrical cellular cross talk, 

crucial in physiological functions regulation. scRNA-seq enable the study of this cell to cell 

communication thanks to its ability to catch Ligand and Receptor co-expression in the different cells. 

This analysis has notably shown a disease specific cross talk between choroid plexus epithelium and 

brain astrocytes as well as oligodendrocytes and microglia in the brain of severe COVID19 patient128.  

Similarly, a disease related crosstalk between smooth muscle cells and fibroblast was observed in 

coronary artery disease129. Furthermore, a TNF-α mediated autocrine microglia activation as well as a 

TGFβ2 mediated regulation of microglial activation by neurons was demonstrated at early stage of 

diabetic retinopathy 130. In AD, researchers have also identified a TGF-β mediated overstimulation of 

perivascular fibroblast driven by other cerebrovascular cells131.  

III.2.a.iv. Functional studies at single-cell resolution 

 Genetic editing coupled with scRNA-seq can decipher the role of genetic element in tissue 

function and disease development at cellular level, highlighting cell type specific transcriptional 

alteration and putative functional consequences. In a recent remarkable contribution, scRNA-seq was 

used both to identify T2D specific regulatory networks in pancreatic islet and a master regulator, 

BACH1, driving the metabolic inflexibility and endocrine progenitor/stem cell features of a T2D-specific 

subpopulation132. Authors then showed that a knockout of this master regulator reverse the T2D 

specific cellular features up to a non-diabetic phenotype. In another outstanding article133, APOE4, the 

main genetic risk of AD, has been induced in a mouse model of AD, and reveal that its selective removal 

in astrocytes was able to decrease AD signature in astrocytes but also in neurons, oligodendrocytes, 

and microglia.  

Other advantage of scRNA-seq analysis is that we can leverage the single cell resolution to 

perturb several gene in one assay. Perturb-seq allows to study the function of several genes at the 

same time in a tissue and cell type specific manner134 . Perturb-seq is based on pooled CRISPR screen 
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with scRNA-seq read out. Dozens of sgRNA can be designed to target specific genes and transduced in 

limited dilution to have one or two sgRNA by cells, allowing single perturbation at single-cell resolution. 

These transduced cells can then be processed through any high throughput scRNA-seq methods, but 

droplet based is more appropriate because it allows the sequencing of a greater number of cells 

increasing the resolution of the approach. This method was used to study the impact of  200 oncogenic 

variants on lung cancer cells135. The authors were able to classify variants into gain of function, loss of 

function or dominant negative variants and discovered that KRAS variants span a continuum of gain of 

function phenotype rather than a discrete functional alteration. Considering TFs perturbation, perturb-

seq enable the study of TFs downstream target genes in a cell type specific manner as demonstrated 

by a pilot study focused on TF regulating dendritic cells to lipopolysaccharides134. They also 

demonstrated the ability of this method to infer cell type specific TFs associated regulatory network.  

scRNA-seq can also be used to assess the cell specific effect of a drug or a targeted therapy. In 

addition to assess the effectiveness on a specific cell type, scRNA-seq has the key advantage to also 

measure putative side effect or off target effect on other cell types. For example, drug use to mediate 

FOXO inhibition in pancreatic islet was shown to also induce dedifferentiation of both alpha and Beta 

cells136. In addition, effect of morphine in brain cell type was assessed showing an oligodendrocytes 

specific cell response never observed before137. 

III.2.b. Single-cell epigenomics 

In parallel of scRNA-seq, other single-cell genomics assays were developed focusing on other 

layer of the regulatory landscape, ranging from whole DNA sequencing to epigenomics assay. Even if 

some single-cell DNA methylation and Histone marks profiling were developed, because of their single 

molecules level, loss of material and contamination or measurement error can have a strong impact. 

Then generating such data produce typically high noise and dropout rates (zero inflated data due to 

missing value)  limiting their application138. Still, considerable effort has been made in assessing 

chromatin accessibility at single-cell resolution139. Remodeling of chromatin accessibility is a key 

epigenetics mechanism regulating cell type specific gene expression and cell differentiation140. 

Epigenetics modifiers like DNA Methyltransferase (DNMT), Histone Deacetylase (HDAC), and Histone 

methyltransferase (HMT) influence chromatin accessibility. These epigenetics modifications typically 

took place on enhancer or promoter region, to regulate the binding of TF or the transcriptional 

machinery.  Then, assessment of open chromatin region at single-cell resolution (scATAC-seq) is a great 

opportunity to decipher the cell specific regulatory landscape. For example, based on cell specific 

chromatin accessibility, 12 different cell clusters were found in pancreatic islet, including several alpha, 

beta, and delta cell states141. It is also very useful to better understand the gene regulatory network 
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governing cell transcription/activity and programing. Furthermore, through its key role in gene 

expression regulation, chromatin accessibility assessment can be used as an alternative to estimate 

gene expression in tissue where RNA collection is very challenging because instable and degraded, 

while DNA is stable and easier to collect142. 

ScATAC-seq droplet-based method are similar to the one for scRNA-seq assay except that 

accessible DNA are captured instead of RNA (Figure 11). Before encapsulation, cells (or nuclei) are 

transposed using the mutant transposase tn5, which, as for classical bulk ATAC-seq method, cuts DNA 

in accessible region while adding a tag. After cell/nuclei encapsulation, this tagged accessible DNA 

fragments can be amplified with addition of a cell specific barcode. 

 

 

Figure 11 : Droplet based single-cell ATAC-sequencing workflow. Adapted from Satpathy  

et al , nature biotechnology, 2019 M   

Through their ability to bind with TFs, open chromatin regions are putative cis-regulatory 

elements (CREs), e.g. promoter or enhancer, regulating expression of neighborhood genes. Then, cell 

type specific open chromatin regions identification allows the discovery of cell type specific CREs. 

Mapping these CREs across cell type is then crucial to refine functional consequences of a variant or 

epigenetics alterations on gene expression. Indeed, a variant or epigenetic alteration like DNA 

methylation falling in pancreatic Beta cells specific CREs are likely to alter specifically Beta cells 

expression. This can be very useful for functional interpretation of GWAS variants that often fall in non-

coding region143,144. For example, in T2D, scATAC seq has allowed to demonstrate that the causal T2D 

variant at the KCNQ1 locus targets specifically Beta cells specific enhancer141. Single-cell chromatin 

accessibility landscape was assessed on healthy brain allowing functional characterization of AD and 
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Parkinson diseases associated non-coding SNPs145. They were able to link them to cell type specific 

target genes and predicts regulatory effect of MAPT (encoding tau) risks variants. 

III.2.c. Single-cell multimodality 

Recently new single-cell assays have been developed to simultaneously measure different 

modalities in the same cell allowing the investigation of interaction between different regulatory 

layers. Interrogating protein level as well as RNA level at cell level highlight correlation between gene 

transcription and protein expression. This is possible with CITE-seq technics, which, in addition to 

capture mRNA, label cell surface protein with oligo linked antibody. The oligo will be subsequently 

sequenced to estimate protein level. However, this technic still relies on a limited number of proteins 

(~200s for cell immune profiling), and only cell surface markers, limiting their scale.  

Another important development is the assessment of chromatin accessibility and RNA 

expression within the same cell. This approach allows unbiased assessment of interaction between 

chromatin remodeling and gene expression at genome-wide resolution. In particular, we can better 

identify genomics region influencing gene expression, i.e. CREs. Indeed, if chromatin accessibility at 

one genomics region correlates with expression of neighbor gene at cell level, it is likely that this region 

influences its expression. Then, we can identify which TFs are likely to bind these CREs using TF motif 

analysis and TF footprint analysis. By this way, we can estimate the TFs regulatory activity on 

downstream target gene and infer a TF-gene regulatory network at subpopulation level. This approach 

can be very useful to demystify the gene regulatory network involved in differentiation process or in 

disease development. Few studies have been performed to date because of their recent accessibility, 

but they already impacted our understanding of cell type or diseases specific gene regulatory network 

identification146,147. Thanks to this approach, it has been shown that TF expression and TF motif 

accessibility correlate and their activation precede transcriptional expression of targeted genes, 

highlighting the key role of chromatin accessibility in programming differentiation of cells140,148.  Single-

cell multiomics analysis of AD brain has shown a SREBF1 regulatory network alteration in 

oligodendrocytes of late stage AD146. Single-cell multimodal analysis on arthritic fibroblast shows 

conserved disease specific gene regulatory networks regulated by NFkB and new candidates, including 

Runx1147. 

III.2.d. Other single-cell genomics related approaches 

Others single-cell genomics approach exist like single-cell whole genome149, single-cell immune 

profiling with V(D)J B cells or T cells receptors screening 150, allowing diverse others applications. Until 

recently, protein binding and DNA methylation profiling at single-cell resolution lacked robust assay. 
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However, recent new technologies emerged trying to overcome these issues151,152. scCut&Tag assay, 

as an extension of scATAC-seq assay, allows to map the location of specific DNA binding proteins at 

cell level. To do that the ATAC transposase is modified to bind antibody prealably fixed to specific 

histone marks or DNA binding protein. Transposase will then preferentially cut and tag DNA regions 

specific to those binding proteins.  

Even if a commercialized kits are not yet available and dropout rates are still an issue, several 

methods exist to profile DNA methylation at single-cell resolution153–155. One of the most promising 

methods is scNMT-seq that enables joint profiling of chromatin accessibility, DNA methylation and 

gene expression in single-cells. Following cell isolation and lysis in single well, cytoplasmic RNA is 

isolated from nucleic DNA to assess cell transcriptome profile using conventional Smartseq2. Then 

remaining nuclei DNA is treated with a GpC methyltransferase, which catalyze cytosine methylation 

only in accessible DNA region. Because in mammal, most of the cytosines are not methylated excepted 

in CpG context, this step allows the labeling of accessible region by methylating accessible cytosine. 

Then, this labeled DNA is bisulfite converted allowing both assessment of GpC converted accessible 

region and endogeneous CpG methylation in parallel. This assay has been implemented in mouse 

embryonic stem cells, and further apply to a study of mouse gastrulation156. In this last paper, 

Arguelaget et al have shown that first exit of stem cell pluripotency coincides with establishment of 

repressive epigenetics marks and followed by lineage specific epigenetics pattern. Then, even if such 

assays are still in their infancy, these results promise great future in the understanding of the role of 

DNA methylation in developmental processes but also in cell type specific epigenetics mechanisms. 

Other single-cell omics methods are still in development, like single-cell proteomics157 and 

metabolomics158 with exciting  perspectives for our understanding of cellular mechanisms involved in 

diseases development. 

III.2.e.  Spatial transcriptomics 

An important emerging single-cell related assay is spatial transcriptomics159. Spatial 

transcriptomics allows the interrogation of in situ cellular heterogeneity by measuring thousands of 

gene expression at cell resolution without loss of the tissue structure. Different methods exist based 

on imaging or on high throughput sequencing. First methods developed were imaging based, relying 

on fluorescence in situ hybridization (FISH) where fluorescent RNA probe allow targeting of cellular 

mRNA 160 or in situ sequencing where amplification of retrotranscripts mRNA and sequencing are 

performed directly on sliced tissue161. These methods have several advantages including higher 

resolution (100 nm) and sensitivity but have a limited gene throughput (even if last methods can access 

to 10k genes162) as well as limited feasibility due to single-molecule imaging.  
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High-throughput sequencing assay are based on array covered by geolocalizable oligo barcode 

(spatial barcode), which retain RNA location within the tissue prior to tissue dissociation and library 

preparation for standard illumina based sequencing163. These methods are unbiased, capturing all 

polyadenylated transcripts and giving the whole cDNA sequence information, interesting for splice 

isoforms, single nucleotides variants or mutations detection. However, there still have a limited 

resolution and sensitity, even it most recent in-development method argue to reached a spatial 

barcoding of 1µM resolution and about 100 unique transcripts per µm²164,165. A commercialized version 

of this method exist, developed by 10X Genomics with their Visium, which have a spot resolution of 

55µM diameter166. 

Spatial transcriptomic technologies have the potential to generate unbiased picture of tissue 

composition, allowing the establishment of tissue atlases and reference maps. They have already 

revolutionized the analysis of nervous system with several studies highlighting spatial transcriptomics 

maps of the entire brain or of specific regions167–172, with specific insight on neurological disorders like 

autism or schizophrenia172  .  

Others biological fields have largely benefited from this enhance technology including 

developmental biology to elucidate spatial dynamics of heart development, spermatogenesis, and 

intestinal development173,174 but also for studying tissue disorganization in disease175,176. In AD, this 

technology has already revealed that genes modulating stress response are spatially differentially 

regulated in hippocampi and olfactory bulbs, with notably Bok, being spatially downregulated in 

hippocampus of mouse and human AD brains177. Another study has found early alterations in a 

network enriched for myelin and oligodendrocytes genes around amyloid plaques, while a network 

enriched for plaques induced genes related to oxidative stress, lysosomes and inflammation in later 

phase178. 

III.3. Computational challenges  

Analysis of single-cell genomics data requires important computational skills and remains quite 

challenging. 

III.3.a. Single-cell data analysis pipeline 

High-througphut sequencing generates thousands of reads per cells that need to be mapped 

to a reference genome to generate a gene-cell count matrix, representing the number of transcripts 

detected for each gene in each cell.  Excepted the need for computational resources, generating this 

count matrix is trivial because it relies on ready to use bioinformatics pipelines.  
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The next step after generating this count matrix is the cell cluster generation based on 

transcriptome similarities (Figure 12). Because data are at genome wide and cell level, the associated 

matrix is of high dimensionality (typically ~30k genes for human transcriptome) with numerous 

observations (n= the number of cells). High dimensional data are challenging to appropriately cluster. 

Furthermore, because data generation relies on little amount of genomics material, single-cell 

genomics data represents a sparse matrix, with lot of zero, making it even more difficult to cluster 

properly. Therefore, there is a need to reduce the dimensionality by looking at common variability 

between genes. Several methods exist to reduce dimensionality including the classical principal 

component analysis (PCA) or more sophisticated one including latent semantic indexing (LSI). 

PCA is a widely used reduction dimension method trying to maximize variability explanation in 

a limited number of dimensions, the principal components, using orthogonal vectors. It is quick to 

compute and give a linear projection of cells on principal components that explain the greatest 

covariance of genes across cells. However, PCA is a linear reduction method so does not catch 

nonlinear variability/pattern. PCA reduction is mostly used for scRNA-seq data as a first step reduction 

method. LSI is a dimensionality method allowing to give higher weight to rare feature mainly used to 

reduce scATAC-seq data179,180. Such reduction method typically reduces the data to ~50 dimensions, 

keeping the linear structure of the data while removing the zero biased, thus facilitating cluster 

identification. Clustering usually implements a graph-based method relying on shared nearest 

neighbor graph. It links cells according to their proximity in the dimension reduced space and further 

refines their link weight based on their mutual cell neighbors. Once this graph is produced, graph-

based clustering algorithm, like the Louvain algorithm181 aiming to optimize the modulatory (i.e. 

module/cluster of highly connected cells), is performed to  produce a clustering of cells reflecting their 

transcriptomic similarities relative to others cells. After this clustering step, cells cluster can be 

annotated thanks to identification of cell type specific markers. This step requires manual curation and 

knowledge about the interrogated tissue/sample. It is now also possible to annotate your cells based 

on scRNA-seq references, highlighting the interest of the human cell atlas and similar initiative182. To 

note, because cell type definition is dependent of the transcriptional profile in scRNA-seq, it is 

sometime hard to estimate if change between two conditions rely on cell subpopulation difference or 

rather reflect cell activity change.  For this reason, it is important to define the cell type prior to perform 

differential expression analysis.  

Once subpopulations are identified, it is then possible to compare different conditions at 

subpopulation level. Two main analyses are classically done: differential expression and differential 

cell-type abundance. Differential expression can be performed within each subpopulation to identify 

cell-type specific transcriptional alterations. This step is not trivial as gold standard has not yet emerge 
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for the statistical part and the analysis will be highly dependent on your sample design. Indeed, to 

avoid technical bias or inflated p-value due to large number of cells, it is recommended to do this 

analysis at pseudo bulk level. To do that, single-cell count is summed for each sample replicates within 

each subpopulation producing a sample gene count matrix by subpopulation of interest. However, we 

need to have enough sample replicates to perform such analysis (at least N>3), which is often not the 

case due to the experiment cost and time. In the other case, differential expression analysis can be 

performed at cell level. In this case, the first step is to normalize for cellular sequencing depth and 

stabilized for variance using a regularized negative binomial model, to reduce technics dependent 

bias183. Then, a standard Wilcoxon rank-sum test can be used to highlight genes differentially expressed 

in your tested condition without making assumption on the sample distribution. 

Difference of cell type abundance between conditions can also be analyzed. Accordingly, to 

previous part, depending on the number of biological replicates, the tests to use will be different.  Chi-

squared test can be used if comparing two proportions with just one replicate by conditions, assuming 

that these proportions represent the whole population. Otherwise, if multiple replicates are available, 

a Wilcoxon test should be performed to compare cell type proportions between conditions. There are 

tests that have been developed specifically for single-cell data184,185, including Milo, a statistical 

framework that used cell-cell similarity k-nearest neighbor graphs, which have shown better 

performances than alternative methods to perform differential abundance testing. This method 

enable the identification of perturbation in cell composition that are hidden when discretizing cells 

into clusters, identifying notably the decline of fate-biased epithelial progenitors in aging mouse 

thymus.  

Then, several others downstream analysis can be performed as explain in previous parts 

(Applications parts), including pseudotime analysis, RNA velocity, and TF activity measurement, each 

with specific set of statistical considerations and challenges that I won’t develop here.  
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Figure 12 : Classical single-cell data analysis pipeline  

III.3.b. Integrative analysis 

An important other challenge, maybe the major one, is data integration. 

III.3.b.i. Batch integration 

First level of integration is considering same modality datasets from different experiments / 

laboratory / sample / species. The challenge is then to remove batch dependent technical bias while 

conserving the biological cell type specific variation. Several methods have been developed to perform 

this task with different efficiency depending on the complexity of the datasets to integrate186. Most 

popular tools are based on mutual nearest neighbors (MNN) graph which will link cells from different 

dataset according to their common cell neighbors in common low dimensional space187,188. Another 

widely used method is Harmony, which corrects directly in low dimensional space the cell position to 

remove batch specific variability189. For more complex integration task (e.g. multiple species 

integration) deep learning based method like scVI or scGen are more efficient, because they can adapt 

for nonlinear variation186 .  
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III.3.b.ii. Single-cell multi omics integration 

A second level of integration is the integration across multiple modalities. First of all, between 

scRNA-seq and scATAC-seq data. Similar tool can be used if scATAC-seq data is also considered at gene 

level but this will result in a loss of scATAC-seq specific information, which reduce biological 

significance. Further methods have been developed to perform this specific task based on gene and 

chromatin accessibility co-variability142 , or on reference multimodal data190  but a lot of work remains 

to be done to effectively integrate both modalities.  

The single-cell multimodal assay allows simultaneous profiling of epigenetic and 

transcriptional landscape in the same cells, which avoid the integration step and enable new 

applications and challenges. The main challenge is then to correctly associate an open chromatin 

region (a peak) to a neighborhood gene expression. In other words, the interest is to find which peak 

(putative regulatory region) regulates which gene, and in which cell type. If these links can be found, 

then we could define cell type specific CREs, and predict gene expression only based on open 

chromatin data, and inversely. This problem is still challenging as I am writing this thesis191. For the 

moment, only few methods have been proposed and are still trivial. SHARE-seq article proposes to 

simply link peak to gene based on the spearman correlation and compared against randomly selected 

features matching genomics region, to evaluate its statistical significance thanks to a ground truth148. 

This approach can evaluate if the peak accessibility explains gene expression but miss the co-variation 

with others peaks and the sparsity of the chromatin accessibility data, which can hide some complex 

associations. ArchR a software design for single-cell analysis of regulatory chromatin used nearest 

neighbor method to group resembling cells and then merge count by group to reduce the sparsity 

problem192. However, more sophisticated or clever methods should emerge to better associate these 

two modalities. Finally, another promising avenue with this single-cell multimodal data is to infer cell 

type specific as well as disease relevant gene regulatory network193–196 , but we are still in the very 

beginning. 

III.3.b.iii. Integrate single-cell with bulk data 

Another challenge in the genomics field is to integrate single-cell data with bulk data. 

Deconvolution methods exist for bulk transcriptome in order to find single-cell composition197 but they 

rely on cell specific datasets references (scRNA-seq or bulk RNAseq on isolated subpopulation). In 

addition, integration of different modalities from different resolutions appears more challenging. 

Typically, genome wide DNA methylation are performed in bulk due to the limited recovery of actual 

single-cell methylation assay155. If cell type composition is known, deconvolution can be performed to 

fit with scRNA-seq data. Otherwise, linear comparison with every subpopulation expression could be 

done to evaluate cell type specific DNA methylation impact. In any case, a critical step is the need to 
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integrate DNA methylation with transcriptomic data. DNA methylation is at CpG level and need to be 

compared to transcriptomic, which is at gene level. Several approaches can be used to do that but are 

still biased. In my first model I will develop a method trying to improve this link, integrating both TSS 

distance, tissue specific chromatin profile, and eQTL information.  

III.3.c. New tools 

To help overcome all these challenges, new computational tools are emerging. Most 

specifically, deep learning-based framework are very promising to perform complex task186. Deep 

learning is based on in silico neural networks resembling to the functioning of the biological one for lot 

of aspect. They allow complex task integration better than standard statistical tool because they can 

catch nonlinear pattern in a semi-automated way, and at high scale198,199. Most of these methods aim 

to reduce the dimensionality of the data like PCA or LSI but this time by extracting more abstract 

features, that could be shared by different omics layers. Like for feature extraction from pictures, 

where deep learning tools have allowed huge advances in identifying objects, animals, or human faces 

in very different context, this tool start to be applied for biological feature extraction and promise great 

advance in this field. scVI is a widely used deep learning tool that reduces the technical bias inherent 

to single-cell data while accounting for batch effect, allowing to efficiently integrate heterogeneous 

single-cell datasets200. Other deep learning-based methods have been proposed then integrating other 

neural network architecture including generative adversarial network, claiming to improve 

discrimination of batch effect198,201,202. 

 In this thesis, I will present how I took advantage of single-cell genomics data using preexisting 

tool and developing new approaches in order to decipher cell type specific molecular mechanisms 

involved in adult chronic diseases development. To do that, I focus on two models: the epigenetics 

programming of hematopoietic stem and progenitor cells (HSPC) in the context of early programming 

of adult chronic diseases, and the Alzheimer’s Diseases susceptibility genes BIN1 function. 
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IV. Model 1: Epigenetics programming of hematopoietic stem and progenitor 

cell (HSPC) 

IV.1. Early Programming of chronic metabolic diseases 

Chronic metabolic diseases, including type 2 diabetes (T2D), obesity and cardiovascular 

diseases (CVD) constitute approximately 70% of deaths worldwide (WHO, 2017), thereby becoming 

the most significant burden to healthcare systems. Although inherited genetic risk and lifelong 

environmental exposure contribute to their development, they cannot explain alone the distressing 

rise in obesity and diabetes of these recent years6,203. Several epidemiological and experimental studies 

indicate that perinatal exposure (fetal and early development, up to 1000 days after birth) to a 

metabolic stress increase susceptibility to the development of chronic complex diseases several 

decades later. Perinatal development is a critical period of rapid growth and differentiation when 

organs shape and acquire their function. It is then a period of intense epigenetics remodeling and 

sensibility to environments which can have durable impact on organ structure and function204.  

Our society have known radical changes this last century, notably in food industry, robotization 

and tertiary deployment, which have significantly modify our lifestyle and influence our exposure to 

nutrient as early as in utero. In 2010, more than half of pregnant women were considered obese in US 

205. In France, a 90% increase of obesity rate among adult woman have been observed between 1997 

and 2012206. Incidence of gestational diabetes mellitus (GDM), corresponding to high blood sugar that 

develop during pregnancy but usually disappearing after giving birth, have also considerably increase. 

The past decade, the incidence increases by 30% in young US women, while doubling for some 

population including Asian Indian207. In Europe, prevalence of GDM reaches 11% of total pregnant 

women. However, impact of this recent change on fetus development and long-term consequences 

remain poorly studied. 

Yet, Barker and colleagues were the first to demonstrate in 1986 that an early (fetal) exposure 

to a nutrient stress increases the risk to develop diseases decades’ later 208. They first observed that 

English regions which were the most impacted by starvation and infant mortality in 20th century were 

also the regions the most affected by CVD decades later208. Following this first observation, two large 

studies were led by Barker et al. to investigate this link and found concordantly a strong association 

between low birth weight, head circumferences or ponderal index, and death from coronary heart 

diseases and T2D decades later209–211. This observation was  replicated in 3 others countries 211–213 and 

show that maternal undernutrition conditioned progeny to future environmental fitness and diseases 

susceptibility. These observations have opened the field of the developmental origins of health and 

diseases (DOHaD), which study how early exposures conditioned people to adapt, or mis-adapt, to 
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future environments. Numerous others epidemiological, animal, and transversal studies succeeded to 

better understand this association and the mechanism behind the apparent early programming of 

ACDs. 

IV.1.a. Epidemiological evidence 

IV.1.a.i. Birth weight 

Several evidence have shown that both extreme of fetal growth increase the risk of ACD. To 

show that, researchers have studied diseases rate in small for gestational age (SGA) or, large for 

gestational age (LGA), compared to appropriately grown neonates. SGA and LGA being defined 

respectively as neonates under the 10th or over the 90th percentile birthweight and ponderal index (PI= 

weight / height3) adjusted for gestational age and sex. Epidemiological studies have found that  in 

addition to coronary heart diseases, SGA are associated to an increased susceptibility to numerous 

diseases, including hypertension 214, type 2 diabetes215, stroke216,217 , dyslipidemia218 , and impaired 

neurodevelopment 219. On the other sides of the birth weight spectrum, LGA have an increased risk of 

ACDs and related comorbidities including cancer220 , obesity221, metabolic syndrome222, T2D223 and 

CVD224  as well as increased risk for neurologic disorders including depression, anxiety, autism, and 

cognitive delay225–228 . Then, these results show that both restriction and excess of fetal growth is 

associated with increased ACD susceptibilities with similar outcomes(Figure 13), suggesting  

converging mechanisms. 

 

Figure 13: U shaped association between birth weight and ACD risk  

Several theories emerged to explain these links. The thrifty phenotype hypothesis, first 

formulated by Barker et al. in 1992229, stipulates that association between SGA and ACD risk results 
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from irreversible alteration in the glucose-insulin metabolism during development. Maternal 

undernutrition led to a decreased insulin secretion by the progeny and to an increased peripheral 

insulin resistance230 , leading to a greater glucose availability for brain and heart. If nutrients become 

abundant in postnatal life, the pancreatic Beta cells will defect and insulin resistance of peripheral 

tissue could then predispose to glucose intolerance and diabetes, as observed in SGA neonates with 

rapid catch-up growth who have more chance to develop insulin resistance and T2D later in life231,232. 

A competitive hypothesis based on genetic influence was developed by Hattersley 233. Indeed, the link 

between SGA and glucose intolerance/diabetes in adulthood could be explained in part by genetics 

factors, for example variants influencing insulin secretion, that can contribute to a decrease in birth 

size and glucose tolerance234–236 . However, genetics variants associated to birth weight through GWAS 

explain only about 7% of the birth weight variation, still supporting an independent influence of 

prenatal exposure affecting birth weight and ACDs susceptibilities237 .  

Gluckman et al tried to generalize the Barker’s hypothesis bringing an evolutionary point of 

view.  They argue that these associations between prenatal exposure and ACD susceptibilities could 

reflect a (failed) predictive adaptation to future environment, i.e a way to have a fitness advantage on 

expected future environment238. To support this hypothesis, evidence of in utero adaptation to 

expected similar future environments exists239–242 . Notably, it was shown that offspring from rat fed 

with HFD develop hypertension and endothelial dysfunction. . However, the endothelial dysfunction 

was prevented if offspring were kept on HFD during early life239. In human, poor in utero environment 

induces morphological and physiological changes like fat deposition, which promote future survival in 

deleterious environment240 . However, if the structural/functional choice made during development 

ended up inappropriate in regard to the future environment, there is a mismatch between tissue 

adaption and reality, which increase the disease susceptibility. Several observations have been made 

in this sense, notably when in utero growth restricted individuals like SGA have postnatal environment 

favoring overconsumption, leading to further glucose intolerance, insulin resistance, and reduced 

lifespan in human or animal models238,241,242. 

IV.1.a.ii. Maternal hyperglycemia 

Gestational Diabetes Mellitus (GDM) or maternal hyperglycemia during pregnancy is a current 

common complication (prevalence was about 17% in 2013243,244) . GDM is strongly associated with 

increased birth weight 245–248 with persistent elevated glycemia (HbA1c ≥ 5.6%) at 3-month pregnancy 

leading to LGA in 26% of case248. The association is even more pronounced for type 1 diabetes mothers 

where the occurrence of LGA is about 56% in a Lille hospital retrospective study249. The in utero 

exposure to hyperglycemia is associated to increase childhood cardiometabolic risk in offspring 

including higher rates of impaired glucose tolerance, obesity, and higher blood pressure. Importantly, 

55



INTRODUCTION 

 

56 
 

these associations are independent of BMI before pregnancy, being born large for gestational age, and 

childhood obesity, highlighting the direct effect of the in utero exposure to hyperglycemia250 . Similarly, 

a previous study has shown in Pima Indian cohort, that T2D mothers lead to 45% of T2D in their 

offspring at age 20-24years old, while only 1.4% for non-diabetic mothers251 . The risk persists even 

after correcting for paternal diabetes, age of diabetic onset, and offspring BMI. Another study showed 

that offspring exposed to T2D during gestation have a higher risk to develop T2D than their siblings 

born before maternal T2D onset252.  

IV.1.a.iii. Maternal Obesity  

In western countries, obesity prevalence is estimated around 30%, while 40 % of women are 

overweight during pregnancy253,254. Growing evidence show that this deleterious metabolic status has 

long-term consequences on offspring especially on adiposity, cardiovascular and metabolic risk. 

Maternal pre-pregnancy obesity is associated with significant increase risk of LGA 255,256 as well as with  

a 3-fold risk of childhood obesity257, while maternal over weight gain during pregnancy is associated 

with increase  BMI258–260 . Furthermore, these evidence are associated with higher blood pressure, 

adverse lipid profile, insulin resistance and higher inflammatory markers in childhood even if those 

cardiometabolic risks can be partially attributed to the increase BMI of the child260–264 . Finally, a follow-

up study on 37,709 individual has shown that higher maternal BMI detected at first prenatal visit is 

associated with increased risk of premature all-cause mortality and hospitalization for CVD265. 

IV.1.a.iv. Glucocorticoids 

Glucocorticoids exposure during development has been shown to be associated with an 

increased CVD risk and insulin resistance266. Glucocorticoids are key factors within the hypothalamic–

pituitary–adrenal (HPA) axis contributing to stress response. Glucocorticoids have a key role in fetal 

development, particularly during the 3rd semester, where maternal glucocorticoids secretion regulates 

fetal growth, brain development, and organ maturation, allowing the fetus to prepare for extra uterine 

life. Glucocorticoids treatment during pregnancy reduces birth weight and lead to SGA associated ACDs 

risk as well as higher blood pressure in adolescent and altered neurological functions267,268. 

Furthermore, adult born SGA have altered control of cortisol expression and increased activity of the 

hypothalamic-pituitary-adrenal suggesting a programming of the HPA axis activity and regulation269,270. 

The altered cortisol level is associated with adverse metabolic profile (higher glucose, blood pressure, 

and dyslipidemia) in adult 270. 

IV.1.a.v. Early life exposure 

Not restricted to in utero exposure, evidence have also shown the influence of early postnatal 

life when differentiation and maturation of the tissues and cells are still intense. Psychological stress 
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during childhood increases the risk of ACD and are linked to macrophage pro-inflammatory tendencies 

271. Early life nutrition and weight gain have also an important role in the programming of ACDs.  Fast 

weight gain has been associated to later obesity, cardiovascular diseases, while poor weight gain was 

associated with metabolic syndrome, impaired glucose tolerance and T2D later 231,272–277. Breast 

feeding could also be associated to decrease risk of later metabolic disorders, but results are 

controversial because of important confounding factors 278–280. The first 1000 days of life, are a critical 

period for tissue development especially for brain281,282. It is then a period of vulnerability, where 

deleterious exposure, including poor nutrition, exposure to toxicants and microbiota imbalance can 

have long lasting consequence on adult 283. Improved nutritional income during these days improve 

cognitive function and school results. At the contrary, deficit in iodine during this period, which is a 

critical nutrient for brain development, impact future cognitive function even if iodine deficit is 

moderate284 . Another important early life factor seems to be the microbiota colonization285. Main gut 

bacterial colonization occur in the first year of life driving by breastfeeding and other maternal transfer 

and is critical for immune system development286,287. Exploding evidence have highlighted the role of 

microbiota imbalance (“dysbiosis”) on immune related diseases, including inflammatory bowel disease 

but also on metabolic disorder including obesity and T2D, and neurological disorders, including 

depression and anxiety, suggesting a role of early microbiota dysregulation in the programming of 

chronic diseases286–288 .  

In light of the impact of early development, clinical initiatives have been launched to better 

understand and inform on this critical period. In Lille, the program “1000 jours pour la santé” held by 

Laurent Storme aims to promote fundamental, clinical and technical research to better identify the 

critical early life factors influencing ACD development and better prevent them289.  

 

IV.1.b. Animal models to understand the physiological mechanisms 

Several animal models have been developed to validate the influence of perinatal environment 

on future ACDs risk and better understand the biological mechanisms behind.  

In rats, global maternal undernutrition, or specific protein restriction, result in reduce 

birthweight290 , increased blood pressure291, and impaired glucose tolerance292 in the offspring in 

adulthood 293,294. These results were reproduced in Guinea pig and sheep295,296 . Putative mechanism 

behind the long term programming of glucose tolerance have been investigated in protein restricted 

pregnant rat model293 .  Such diet appears to reduce fetal pancreatic islet expansion leading at birth to 

reduce endocrine and Beta cells mass as well as reduced insulin secretion. Further studies have shown 
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that islet cells exposed to this in utero restricted environment have a decrease of replication rate in 

vitro , and Beta cells an even lower proliferation rate297,298. Interestingly, the alteration of insulin 

secretion and islet expansion are still apparent after 7 days of culture in normal metabolic 

environment, demonstrating the programming of these cells 294,299. Long term consequences of such 

alteration appear influenced by several parameters, including the sex of the offspring, the 

developmental window targeted by the exposure, and the postnatal nutrition300,301. If the protein-

restricted diet is present just during pregnancy, only female have reduced insulin response at 3 months 

old294. If restriction remains during lactation, plasma insulin is reduced even in adulthood and insulin 

response is greatly reduced in both sex301. Interestingly, such alterations are not associated with 

glucose intolerance, but at contrary, with greater glucose tolerances301. Further studies have shown 

that this appearing contradiction can be explained in part by the fact that peripheral tissue like liver, 

adipose tissue and muscle express more insulin receptors to compensate302–305. These evidence 

confirm the impact of maternal malnutrition on future cardiometabolic health with programming of 

metabolic circuits aspecially the insulin pathway. With the example of the endogeneous pancreas, 

these animal models studies also show that both tissue structure alteration (decrease Beta cells mass) 

and cell intrinsic factor (reduce Beta cell proliferation and insulin secretion ability) can mediate the 

long term consequences of early exposure to detrimental environment.  

Further studies have assess the role of glucocorticoids signaling in these programming of 

metabolic risk306,307 . Fetal exposure to glucocorticoid lead to decrease birth weight and increase blood 

pressure in sheep308,309, while maternal dexamethasone intake (a synthetic glucocorticoid) in rats lead 

to a reduced progeny birth weight as well as to hypertension and glucose intolerance with possible 

insulin resistance in adulthood310,311. Furthermore, it was shown that maternal undernutrition 

increases maternal glucocorticoid secretion 312, while adrenalectomy, abolished effect of maternal low 

protein intake in the offspring, highlighting the key role of stress related glucocorticoid signaling in 

fetal programming of metabolic circuits313 . 

Interestingly, in both maternal low protein and caloric restricted diets rat models, impairment 

in glucose tolerance appear only following subsequent adverse life events or mis-adapted 

environment. This effect was notably demonstrated in the context of rapid catch up growth/ high food 

consumption in childhood leading to obesity242 or  during aging314,315. Indeed, offspring of rat fed with 

low protein diet show impairment in glucose tolerance only at around 15 months, and diabetes few 

months after316. Mechanistically, this can be explained because of the age dependent development of 

insulin resistance in peripheral tissue including adipocytes and skeletal muscle. This insulin resistance 

seems to develop from a molecular defect downstream of the insulin receptor which impaired PI3K 

kinase pathway activation317. These evidence show that in utero detrimental exposure like protein 
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restriction can predispose individual to have ACDs following future adverse life events, further 

supporting a reduced cellular plasticity to adapt to future environment.  

Not restricted to peripheral tissue, exposure to maternal undernutrition appear also to 

program behavior related to the central nervous system. Indeed, Delahaye et al have previously shown 

that rat maternal undernutrition can durably program hypothalamic appetite regulatory system 

through a drastic decreased of leptin surge involved in the development of this system  and a reduced 

responsiveness of anorexigenic POMC neurons318,319. In an opposite way, offspring of obese rat show 

an amplified and prolonged neonatal leptin surge and lead to a long term leptin resistance, which could 

explain the programming of hyperphagia and obesity in its animals, but also in human320.  

To remain on the other side of the exposure spectrum, the impact of over exposure to 

nutrients have also been shown to predispose to metabolic disorders. In rat, mild diabetic mothers 

lead to macrosomic progeny with increase pancreatic islets development and Beta cells mass due to 

hyperplasia and hypertrophy, while declare a glucose impaired tolerance later321. Similarly, maternal 

overeating lead to glucose intolerance on the offspring at 3month old322, while maternal high fat diet 

lead to hypertension, leptin, and insulin resistance, as well as fat accumulation 323–325. Furthermore, a 

recent study has shown that parental HFD or High sugar diet program inflammatory and oxidative 

parameters in reproductive tissue of rats offspring, highlighting putative mechanism of 

transgenerational transmission326. Interestingly, some of those impacts were sex specific with, for 

example, female offspring being more affected by hypertension327 . Together, these findings strongly 

show that mother diets or metabolic status impact future offspring metabolic health with impact on 

central and peripheral tissues. 

Thus, several in utero and early life factors can influence future adult disease risk, influencing 

metabolic parameters in early life. However, the lifelong molecular and cellular mechanism behind 

remain poorly understood. 

IV.1.c. Epigenetics memory of early exposure 

There is several decades between the fetal exposure and the associated ACDs onset, 

suggesting that early exposure results in long term tissue development alteration and/or decreased 

cellular plasticity. Such programming mechanism often relies, at least in part, on epigenetics 

modifications. Indeed, epigenetics mechanisms play a key role in mediating the influence of  

environmental exposures at cellular and molecular level. Diet, living place, drug treatments, or 

unhealthy habits are environmental factors known to influence epigenetics status 328. Dietary 

restriction protects from age associated DNA methylation and induces epigenetics reprogramming of 
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lipid metabolism329. Work out influences DNA methylation, but also histone acetylation and miRNAs 

expression330. Six month aerobic exercise reshapes the whole genome DNA methylation in skeletal 

muscle and adipose tissue influencing lipogenesis, while miRNAs expression profiles allow 

discrimination between low and high responders to resistance exercise 330. Chronic alcohol 

consumption leads to significant reductions in S-adenosylmethionine (SAM) levels, the metabolite 

substrate of DNMT enzyme, thereby contributing to DNA hypomethylation331. Smoking alters DNA 

methylation of numerous genes and disturb several miRNAs expressions 332. In adult, impact of methyl 

donor deficient diets on methylation status and gene expression is partially reversible when the methyl 

donor is added back into the diet333,334. Several durable epigenetics alterations have been shown in 

individual exposed to in utero stress, when the epigenome is established supporting important role of 

epigenetics in the early programming of ACDs 335,336. 

Evidence for an epigenetic programming of the metabolic syndrome have been shown in SGA. 

A global DNA methylation alteration was observed in adult offspring exposed to prenatal famine in 

Dutch Hunger Winter337, with a decrease DNA methylation targeting the IGF2 gene 338. An increase 

methylation and decrease expression of proopiomelanocortin (POMC) in cord blood, precursors of 

many metabolic hormones, have been associated with lower birth weight and with a higher triglyceride 

and insulin blood level during childhood, exposing a predictive epigenetic biomarker of future 

metabolic condition339 . Abnormal birth weight is also associated with several durable epigenetics 

modifications in energy homeostasis genes, including DNA hyper methylation and reduce expressions 

of ATG2B, NKX6.1, and SLC13A5, related respectively to autophagy, Beta cells development and lipid 

metabolism; and hypo methylation and increase expression of GPR120  gene, regulating free fatty 

acid340. In rat, maternal dietary restriction led to decrease promoter methylation of glucocorticoid 

receptor (GR) and peroxisomal proliferator-activated receptor (PPAR), involved in stress response and 

lipid metabolism, and are associated to an increase expression of these genes in the offspring liver341. 

Epigenetics change have also been shown in kidney and adrenal gland from in utero diet restricted 

offspring respectively in p53 and in angiotensin II type 1b receptor genes, both playing a role in 

hypertension programming342,343. 

Epigenetics programming also occurs in LGA or related in utero excess nutrient exposure. In 

whole cord blood of LGA neonates, DNA hypermethylation of the FGFR2 gene have been observed344. 

In placental, an hypermethylation has been found in repetitive elements LINE-1 and AluYb8 and was 

associated with the methylation of polycomb group targeted genes as well as developmentally related 

transcription factor binding sites345. Interestingly, similarly to SGA from Dutch Hunger Winter, GDM 

induced LGA display a change in IGF2 methylation pattern in cord blood and placental tissue 346–348. 

IGF2 change in methylation was shown to be associated with neonatal adiposity338. The common 
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epigenetics signature between LGA and SGA was further demonstrated by Delahaye et al focusing on 

CD34+ cord blood progenitors identifying several DNA hypermethylation targeting stem cells and 

metabolic pathways349, that I will further develop later.  

Epigenetics alterations could also program insulin resistance as a global DNA methylation 

pattern in cord blood was shown associated with insulin sensitivity in childhood350. GDM induces 

hypermethylation and decreases expression of lipoprotein lipase gene in placenta and was associated 

with 5 years offspring body fat composition351. DNA methylation alteration persists throughout life as 

observed in blood leukocytes of in utero exposed children and adult, on genes known to contribute to 

T2D and pancreatic Beta cells function352–354.  

The expression of leptin, the major regulator of food intake and body mass, found altered in 

obese peoples355, can also be epigenetically programmed in utero, as its methylation status in cord 

blood offspring is associated with maternal glucose intolerance, GDM, and maternal obesity356–358.  In 

mice, a global DNA methylation was shown in liver, muscle, and adipose tissue of offspring of mother 

fed with high fat diet (HFD) 359. In primates, obesity and maternal HFD even prior to pregnancy and 

obese mother were shown to modify the chromatin structure of fetal liver through histone 

modification and were associated with dysregulated fetal lipid accumulation360,361. In female 

hypothalamus, perinatal maternal high-fat diet environment induced decreased melanocortin 4 

receptor (Mc4r) and increase H3K27ac in its promoter and were associated with increased food intake 

and obesity in offspring362. 

Other prenatal stress, not dietary related, can also lead to long-term epigenetics change. In 

mouse brains, prenatal stress (mother subjected to daily physical constraint) induces important long 

term epigenetics alterations including aberrant DNA methylation and persistent DNMT expression 

while program for hyperactivity and for altered social interaction in adulthood363.  These alterations 

were corrected upon the administration of an histone deacetylate inhibitor (valproic acid) and by 

antipsychotic agent with DNA demethylation activity (clozapine), highlighting a causative effect of DNA 

methylation alteration in cognitive disorders363 . Such epigenetics programming was also shown in both 

human and animal models for others neurological disorders including anxiety, depression, attention 

deficit, and autism364. For AD, mouse models of AD exposed to prenatal or early life stress accelerate 

the impaired cognitive function including deficit in object location memory and impaired spatial 

learning365,366. Furthermore, chronic early life stress in these mice increases defective Abeta levels in 

middle age and correlates with reduce cognitive flexibility, while short treatment with glucocorticoids 

receptor antagonist rescues cognitive deficit and Abeta load367 . 
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Then, different in utero stress can led to durable epigenetics change. Even if some targeted 

approaches have shown correlation between epigenetics alteration and subsequent gene expression 

alteration, as the study observing hypermethylation of lipoprotein lipase promoter associated with 

reduction of its expression in pancreas351, the impact of the global epigenetics memory on transcription 

and signaling pathway remain poorly studied. Yet, this is critical to have a comprehensive view of the 

tissue dysfunction. Different integrative genomics analysis should be performed to understand more 

clearly the cellular and molecular signaling affected by these epigenomics alterations. Dr Fabien 

Delahaye and colleagues have worked on that these last years and I had the opportunity to continue 

along this effort during this thesis. 

IV.2. HSPCs model to study early influences  

To study the influence of early exposure on regulatory landscape and cell signaling, Dr Fabien 

Delahaye and colleagues focused on the specific model of human hematopoietic stem and progenitors 

cells (HSPCs). 

HSPCs contain hematopoetic stem cells (HSC) and more differentiated progenitors including 

the multipotent progenitors (MPP), and three main lineage progenitors the erythroid (MEPs), lymphoid 

(CLPs) and myeloid (GMPs) progenitors (Figure 14). The erythroid progenitors give rise to 

megakaryocytes derived platelets, involved in blood clotting process, and erythrocytes, or red blood 

cells ensuring mainly O2 and CO2 transport for cellular respiration. The myeloid lineage give rise to 

monocytes, macrophage, granulocytes, and dendritic cells governing the innate immune response and 

inflammatory process. Finally, the lymphoid lineage, giving rise mainly to B cells and T cells, are 

involved in the acquired immune response. HSC can self renew and differentiate to produce these 

different progenies, a process called hematopoiesis. 

Hematopoiesis occurs in different places in the body during development. Primitive 

hematopoiesis take place in the yolk sac approximately at day 7 of embryonic development. Immature 

precursors allow the generations of erythrocytes for embryonic O2 supply368,369. Placenta is the first 

reservoir of mature HSC (which can give all blood cell types) during development. Once vasculature 

developed (at embryonic day 12) HSC migrate to fetal liver, where they actively cycled (in contrast to 

bone marrow). During this HSC expansion in fetal liver, cartilage and bone are generating during 

mesenchymal condensations and are associated with bone vascularization (embryonic day 17.5) 

allowing finally HSC colonization of bone marrow. During life, HSC remain in bone marrow in a 

quiescent state. The cellular niche is an hypoxic environment around arterioles, where perivascular, 

endothelial, Schwann, and sympathetic neuronal cells secrete quiescence promoting cytokines such as 

CXCL12 and SCF 368. Differentiated hematopoietic cells like macrophages or megakaryocytes are also 
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able to feed back in the niche to regulate HSC dormancy, either promoting or regulating HSC 

proliferation or migration depending on the context370–372 . In basal state, macrophages promote the 

retention of hematopoietic stem cells by regulating CXCL12 production in the bone marrow and 

megakaryocytes localized with HSC promoting their quiescence through CXCL4 and TGF-β1 

production370–372 . Under hematopoietic demand, depletion of macrophage mediated CXCL12 

production allow HSC mobilization, while FGF1 production by megakaryocytes under stress promote 

HSC expansion371.  

 

 

Figure 14 : Classical hematopoetic hierarchy and main regulators.  Adapte d from Cheng 

et al, Protein & Cell, 2020 N   

HSPCs are a relevant model to study influences of early environment on ACDs risk.  They are 

easily isolable at birth from cord blood while being able to self-renew throughout life, conserving 

epigenetic memory of past exposure. Furthermore, the hematopoietic system play an important role 

in ACDs development as I will develop in next sections.  

IV.2.a. Cord Blood HS(P)C 

                                                             
N https://link.springer.com/article/10.1007/s13238-019-0633-0   
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Cord blood HSPC are defined through CD34 cell surface marker. CD34+ cells represent around 

0.4% of cord blood mononuclear cells (MNC) with high variability between samples typically from 0.2% 

to 1.4%373. By contrast, less than 0.01% of CD34+ cells are found in adult peripheral MNC and around 

1.5% in bone marrow MNC. Among the CD34+ population, cells negative for CD38 cell surface marker  

phenotype are the HSCs with the greater long-term repopulation ability373  and can be used for 

transplantation374,375 . They represent around 0.05% of whole cord blood MNC. 

Cord blood HSC are more responsive to stimulation than adult bone marrow HSC. Indeed, their 

quiescent form have a greater proliferative response to cytokines with lower dependence on stromal 

cells than bone marrow or adult blood HSC 376,377. They also give rise to relatively different progeny 

compared to adult HSC. Notably, they give rise to less NK cells, produce a specific T cell progenitors 

(with the phenotype CD3-/CD8-), and different number of B cell subpopulation 377. Several cytokines 

can stimulate HSC to proliferate notably SCF, Flt3, IL-11, IL-3, IL-6, GM-CSF while others can influence 

their differentiation, notably M-CSF, G-CSF, Epo, and Tpo.377,378. 

IV.2.b. Stem cells epigenetic memory 

HSPCs, as for others stem cells, are present throughout life and thus have the ability to 

conserve putative cell memory of past exposure. Evidence of stem cells epigenetics programming exist. 

For example, it was recently shown that stem cells of follicle hairs can reprogram following wound 

damages to repair the epidermis through long-term epigenetics memories 379. Adipose derived 

mesenchymal stem cells (MSCs) are functionally reprogrammed in obesity which lead to loss of 

stemness capacity and multipotency, change in their metabolism, and reduced immunomodulation 

and angiogenic capacity380,381.  Dynamic regulation of DNA methylation plays an important role in 

orchestrating stem cell function 382. Decreased expression of DNMT1, the enzyme maintaining DNA 

methylation pattern throughout division, reduces cell renewal and induces premature differentiation 

of epidermal progenitor cells, leading finally to tissue loss383. In HSC, reduced DNMT1 activity lead to 

defect in self renewal but also in decreased differentiation potential mirroring the defect observed in 

aging383–385. Then, the stem cells epigenetic memory appears as an important player in regulating stem 

cells function with important consequences on tissue regeneration capacities and tissue long-term 

function. 

IV.2.c. Hematopoiesis and ACDs 

 The choice to study HSPC is also relevant because of its role in ACDs. The hematopoietic system 

plays a critical role in processes like inflammation, angiogenesis, and cardiovascular repair throughout 

life, making its progressive alteration a candidate mechanism in the development of ACD. 
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IV.2.c.i. Hematopoiesis regulation 

 HSC multipotency requires fine control of differentiation in order to give appropriate progeny 

and ensure cellular homeostasis. To ensure this control, it was recently demonstrated that epigenetics 

remodeling and TF activity act in concert.   The role of DNA methylation in HSC differentiation has been 

pinpointed after the identification that the principal somatic mutations driving HSC clonal expansion 

and defective hematopoeisis in aging are in DNMT3A and TET2 genes, the writer and eraser of DNA 

methylation386. Further functional studies have validated DNMT3A and TET2 roles in regulating HSC 

self renewal and differentiation in blood progeny387–390. Notably, the loss of TET2 leads to profound 

increase of HSC self-renewal while responsible for a myeloid bias differentiation388–390. TET1 loss leads 

to increase HSC self-renewal but was associated with lineage bias toward B cell production391. Ablation 

of DNMT3A impairs HSC differentiation while promoting HSC expansion and is associated with 

substantial changes in CpG island methylation with upregulation of HSC multipotency genes including 

GATA3, RUNX1, PBX1, and CDKN1A, while downregulation of differentiation factors including FLK2, 

SPI1, and MEF2C.  Further studies have further highlighted the important role of DNMT1, TET1 and 

TET2 in regulating methylation of HSC differentiation program385. Together, these evidence show the 

crucial role of DNA methylation in the control of HSC differentiation. 

Further studies have investigated other component of the regulatory landscape of 

hematopoiesis, including the chromatin dynamics and the TF activities. In the first study leveraging 

single-cell ATAC-seq to understand the chromatin changes governing hematopoiesis,  Buenrostro et al 

have demonstrated that the regulatory landscape of HSPC is governed by modulation of lineage 

specifying TF motif accessibility 392. Notably, they showed critical chromatin changes of GATA2 and 

MESP1 motif accessibility in HSC, respectively involved in erythroid and lymphoid lineage 

differentiation. Such rearrangement were also observed in more restricted hematopoeitic progenitors 

notably in TCF4  for the lymphoid-primed multipotential progenitors (LMPPs), STAT1 accessiblity for 

peripheral dendritic cells, and CEBPE for GMP differentiation. In a recent study assessing the impact of 

DNMT3A and TET2 mutations on chromatin landscape using single-cell sequencing, Izzo et al have 

shown that these mutations disrupt hematopoietic differentiation landscape, with opposite effects on 

erythroid and myeloid progenitors distribution393. They further show that Tet2 or Dnmt3a knockout 

(KO) induced opposite DNA methylation changes (hypermethylation for Tet2 KO and Hypomethyation 

for Dnmt3a KO) but both occur in same CpG rich accessible regions. These regions are enriched for 

erythroid TF motif, including Tal1 and Klf1, reconciling the opposite lineage priming (erythroid primed 

for Dnmt3a KO, and myeloid primed for Tet2 KO) observed in these two mutants. This opposite 

methylation change is associated with a shift in TF motif accessibility with decrease accessibility in Tet2 

KO HSC while an increase accessibility for Dnmt3a KO HSC as demonstrated using single nuclei ATAC-
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seq. These effects were studied in mice but were further validated in DNMT3A-mutated human 

samples supporting the role of the DNA methylation mediated chromatin change in the erythroid skew 

observed in these mutants. These results strongly support the crucial role of DNA methylation in 

remodeling chromatin accessibility and controlling activity of lineage defining TFs for appropriate HSC 

differentiation and multipotency.  

Together, these studies have shown the importance of DNA methylation and chromatin 

accessibility remodeling in the control of hematopoiesis and emphasize the putative impact of their 

alterations on hematopoietic function.  

IV.2.c.ii. Importance in aging and diseases 

Defective hematopoiesis, chronic inflammation, and oxidative stress are key interconnected 

mechanism observed in aging and contributing to ACD risk. Clonal hematopoiesis, defined as a clonal 

expansion of dysfunctional immune cells occurring during normal aging, doubles the risk of coronary 

heart diseases in human394. Such clonality directly affects the heterogeneity and plasticity of HSC niches 

driving hematopoietic dysfunction and increasing ACDs susceptibilities54,56. Indeed, a relation between 

HSC clonal expansion and bias toward proliferation was observed in aging395,396. Furthermore, myeloid 

biased HSCs concomitant to an increase in myeloid cells in blood are observed in aging and strongly 

associated with CVD risk 395,397,398. This increased myeloid cells, such as macrophages are known to 

worsen chronic inflammation by increasing levels of inflammatory cytokines394,399. Considering the 

hematopoeitic compartment, this disturbed homeostasis (balance between differentiation and 

proliferation) can have deleterious consequences on regulation of inflammation and therefore was 

shown to contribute to the inflamm-aging phenotype, a chronic low-grade inflammation observed in 

aging56,395,400. Alone, the dysregulated inflammation is a major contributors to the vicious circle of 

obesity, T2D and CVD development395,401,402.  Together, these evidence emphasize the role HSC 

heterogeneity or plasticity alteration in ACDs programming, highlighting the relevance of the 

hematopoietic system as a model to study the early programming of ACDs. 

IV.2.c.iii. Evidence of early programming of hematopoiesis 

Several detrimental exposures can affect hematopoietic compartment plasticity and exposes 

to diseases risk. For example, short term hyperglycemic spikes, as observed in prediabetic or T2D 

patient, increase myeloid cells production in bone marrow, which accelerates atherosclerosis403. It was 

also shown in a mouse models that hyperglycemic environment lead to a reduced HSCs mobilization 

capacity in response to G-CSF404. However, few studies have been done in the context of in utero 

exposure. In human, the concentration of circulating CD34+ cells (HSPCs) was shown to be associated 

with extreme fetal growth405–407, suggesting impact on HSPCs mobilization. More recently, a study led 
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by Kamimae-Lanning et al  have assess the impact of maternal obesity and/or high fat diet on the fetal 

hematopoieitic system development 408. They collected HSPCs from fetal liver to compare their 

expansion and repopulation ability depending on the nutritional exposure. They showed that HSPCs 

from fetus exposed to HFD, have a restricted physiological expansion and repopulating capacity while 

having an increased differentiation shifted toward myeloid lineage. These alterations are associated 

with changes in the expression of several genes involved in metabolism, immune and inflammatory 

processes, as well as stress response, and of key genes involved in self-renewal and HSC maintenance 

like Egr-1 and Bmi1. This evidence support the early influence onf the hematopoetics system, however, 

if such alterations are conserved after birth remain to be explored.  

IV.2.d. First study of early epigenetics programming of HSPCs 

To answer these questions, Dr Fabien Delahaye et al have performed epigenomics analysis on 

HSPCs collected from neonates exposed to extreme fetal growth (both restricted growth, i.e. SGA, and 

overgrowth, i.e. LGA) and from appropriately grown neonates (CTRL).  

They collected HSPCs from 60 samples (20 SGA, 20 LGA, and 20 CTRL) isolated from cord blood 

thanks to the CD34+ cell surface markers and performed on DNAs genome wide CpG methylation assay 

using the HELP tagging methodO409. They compared either SGA or LGA samples to appropriately grown 

neonates (CTRL) samples. They showed that both SGA and LGA neonates present a global increase of 

DNA methylation close to genes regulating stem cells function 349. They also found an interesting sexual 

dimorphism, with female LGA neonates being more affected by DNA hyper methylation than male. To 

study putative influence of these epigenetics alterations on gene expression, they integrated these 

results with histone marks profiling of CD34+ cells. They evaluated the putative regulatory landscape 

of HSPC defining promoter, enhancer, as well as heterochromatin region using these histone marks 

profiling. They observed an enrichment for differentially methylated CpGs in promoter and active 

enhancer regions suggesting putative transcriptional consequences associated to this epigenetics 

alteration349,410. Together, these results have highlighted evidence of epigenetics 

memory/programming of HSPC both in SGA and LGA. 

IV.3. Remaining challenges 

This previous study by demonstrating extreme fetal growth associated epigenetics 

programming of HSPCs rised important biological questions i) What is the impact of these methylation 

changes on gene expression;  ii)  What is the consequences on HSPC homestasis and function?  

                                                             
O the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) Tagging method is an enzymatic method 
based on the DNA cutting by the restriction enzyme HpaII of unmethylated CCGG site 
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Indeed, the relationship between change in DNA methylation and change in gene expression 

remained mostly uncovered. Evidence suggest that hypermethylation of CpG islands close to promoter 

lead to transcriptional repression18,19, but the effect of the methylation respond to far more complex 

model largely influenced by the genomic context411. Then, integrate epigenomics and transcriptomic 

data is still necessary to assess the impact of epigenetics alterations on gene expression. This is 

integration will help us better understand the mechanism behind early programming of ACDs. Such 

integrative approaches have shown their interest in animal model. Notably, a study has shown that 

intrauterine growth restriction induce persistent DNA methylation alterations in pancreatic islet of rat 

with concordant changes in expression of nearby genes prediposing to T2D412. However, in human, 

such studies are lacking. This is why I dedicated part of my thesis works to the integration of 

epigenomic and transcriptomic data from exposed and control neonates HSPCs.   

Hematopoiesis is finely regulated by epigenetics mechanisms, then epigenetics alteration 

observed in HSPCs exposed to extreme fetal growth could have a direct impact on HSPCs 

heterogeinety, or plasticity/differentiation capacity, and explain future tissue dysfunction and diseases 

susceptibility. Challenging exposure, like infection, tissue damaged, or blood loss can lead to durable 

change in tissue composition and function as well as regeneration capacity, impacting risk of 

developing future diseases413,414. Such impact on stem cells plasticity was already observed following 

detrimental exposure but also occur ‘naturally’ altered in aging. Indeed, a stochastic epigenetics 

alterations is observed in aging382, mostly reflecting imperfect tissue maintenance of epigenetics 

marks, creating an epigenetics mosaicism between cells of a same individual, aspecially for stem cells 

wich self-renew across life. This phenomenon have the ability to restrict stem cells plasticity and 

associated function but also lead to clonal expansion of defective stem cells415. Ultimately, that can 

lead to stem cells exhaustions, an other hallmarks of aging, but also tissue dysfunction and 

development of ACDs385,415. 

Recent studies have shown that HSC differentiation is a continuous process rather than have 

discrete steps of differention as previously stated (Figure 15). Cells in differentiation are not 

synchronized forming a spectrum of differentiation, i.e. a continuum of cellular heterogeneity. It was 

notably shown, that hematopoietic stem cells (HSCs) rather than being a highly homogeneous cell 

population are in fact an ‘HSCs cloud’ of cells at different differentiation level thus challenging a long-

standing differentiation model, highlighting the interest to consider cell heterogeneity122. Similarly, a 

study in bone marrow identified a subset of HSC primed to become megakaryocytes 416. Other studies 

of HSC niches during development or during aging have also reported HSC heterogeneity and a biased 

toward a specific lineage417. Similar increase heterogeneity has been observed in multipotent 

progenitors (MPPs) that express lineage biases gene even at early stage of differenciation 418.  
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Figure 15 : Classical hematopoetic hierarchy (A) versus revised view of h ematopoesis 

based on single-cell RNA-sequencing evidences (B). Reprinted from Zhang  et al, Stem 

Cell Research & Therapy , 2022P 

In regard of these evidence, we hypothesized that early epigenetics alteration of stem cells as 

observed in SGA and LGA could reduce HSPCs heterogeneity or plasticity. In this thesis work, I 

leveraged single-cell genomics data to assess such impacts, focusing on the LGA model. 

IV.4. Large for gestational age model 

LGA are characterized by an excessive fetal growth leading to a birth weight and ponderal index 

over the 90th percentile, and have an increase susceptibilities to develop ACDs including obesity221, 

Type 2 diabetes223 and cardiovascular diseases224.  These increase susceptibilities are associated with 

an increased risk of impaired glucose tolerance and insulin resistance during childhood suggesting an 

early cellular reprogramming in these neonates419–423. Compared to SGA which have been intensively 

studied aspecially during hunger period, LGA have been less studied. Yet, LGA onset have increased 

during the 20-30 years, about 15-25% in developed country424 and even larger in developing country425. 

However, the physiopathological consequences of being born LGA remain poorly understood. While 

being born LGA have also a genetic component, the recent raise of LGA clearly suggest that our modern 

environment contribute largely to this phenotype. Different in utero exposure can explain the fetal 

overgrowth. Maternal hyperglycemia, is associated with fetal hyperinsulinemia and increase by two 

the risk to give birth to LGA neonate245,426,427. Maternal obesity increases also by two the risk of LGA255.  

                                                             
P https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-02718-1 
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Similarly, maternal dyslipidemia, including high triglycerides and high density lipoprotein (HDL) are 

associated with increased birthweight and LGA risk, and was consistent across different populations428. 

Maternal dyslipidemia is also associated to over secretion of placental Insulin like Growth Factor 1 

(IGF1) highlighting a putative molecular pathway linking maternal dyslipidemia and excessive fetal 

growth429. Then, fetal overgrowth can be explained by overexposure to growth factor including 

glucose, insulin or IGF1. However, the long-term cellular and molecular consequences of this fetal 

exposures leading to LGA remains poorly understood. In these thesis works, I studied influence of this 

excessive fetal growth on HSPC regulatory  landscape and plasticity, integrating both single-cell 

epigenomics and transcriptomics.  

 

V. Model 2: Alzheimer’s Diseases (AD) susceptibility gene BIN1 study 

V.1. Alzeihmer’s disease 

Alzheimer's disease (AD) is a neurodegenerative disease responsible of 70% of dementia, 

affecting more than 20% of elderly people (> 75 years old). It is the  7th leading cause of death 

worldwide and is the major causes of disability and dependency among older people globally 8,430. It is 

characterized by progressive neuronal degeneration in the brain associated with memory and 

cognitive loss. Even if the definitive diagnosis can be performed only after brain autopsy, cognitive test 

and PET scan help to have a clinical diagnosis of the disease. First symptoms are short term memory 

loss and inability to acquire new information as a result of the reduced neuronal plasticity7. Cognitive 

and motor function progressively decline after years as the consequence of neurotoxic aggregates 

spreading across the brain. Many unresolved questions regarding the AD pathophysiological process 

remain, so that no efficient treatment is yet available to prevent or cure this disease. AD is estimated 

having a 70% heritability suggesting strong genetics influences. A major genetic risk is APOE4, found in 

~60% of AD carrier, while in 15% of the global population but not explain every diseases onset, as at 

least 1 third of AD patient do not have this variantQ431. Then, it is critical to understand others genetics 

influences as well as the role of these genes on brain and AD pathogenesis.  

V.2. Brain complexity 

The brain is a complex tissue displaying diverse cell types and complex cell to cell interactions. 

It can be broadly described as a neuronal network supported by glial cells, working in concert to 

efficiently convey and process information under the form of electrochemical pulses, giving rise to 

appropriate behavior and body homeostasis.  Glial cells include astrocytes, oligodendrocytes as well 

                                                             
Q In a recent study, APOE related variants was able to explain 23% of all AD cases39 
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as microglia, bringing structural, metabolic and immune supports. Information are transfer across 

neurons thanks to “all or nothing” electrochemical pulse, called ‘action potential’, generated by 

neurons and transferred through their axon to synapses, where the information can be transmitted  to 

other neurons through chemical signal. There is excitatory and inhibitory signal, governed mostly by 

Glutamatergic and GABAergic neurons, which respectively excite and inhibit downstream neurons 

through Glutamate and GABA neurotransmitters. The sum of excitatory and inhibitory signals 

transmitted to a neuron will be integrated to give rise or not to a new action potential transmit to 

downstream neurons. Furthermore, neurons are not only a passive information relay, but they are also 

able to retain information through biochemical and structural changes and therefore adapt their 

excitability and synapses connectivity. This feature allows plasticity of the neural network, and thus 

continuous adaptation and learning. That’s how the brain allow complex treatment and modeling of 

the information giving rise to learning, analytical thinking, and other complex behaviors. 

 Even if all neurons have similar structures with dendrites and cellular body receipting and 

integrating electrochemical signal from others and one axon transmitting signal to others neurons, 

there are different neuronal subtypes depending on the neurotransmitter they produce/release at 

synapses. Most of the neurons in brain are glutamatergic (around 40%), i.e. they produce glutamate 

as main neurotransmitter, but others can be GABAergic (producing GABA), dopaminergic (producing 

dopamine) or cholinergic (producing acetylcholine). This diversity allow specific neural system, 

complex interactions and independent cognitive process. Glutamatergic synapses are mainly 

excitatory, i.e. they produce depolarization inpost synaptic neurons and are linked to many other 

neurotransmitter pathways, with glutamate receptors being found in more than 90% of all neurons432. 

GABAergic neurons are the counter side of glutamatergic neurons producing mainly inhibitory signal, 

i.e. their principal role is to reduce excitability of postsynaptic neurons. Dopaminergic and cholinergic 

neurons take part of independent neurocircuits in brain involved in specific cognitive process. 

Cholinergic system is mainly involved in memory and learning in hippocampus432, while dopaminergic 

neurons are mainly involved in the rewarding system433.   

Glial cells have also an important diversity in term of structure and functions than neurons.  

They include astrocytes, microglia, and oligodendrocytes. Astrocytes have generally a star shape and 

bring metabolic and structural support to the neurons. They derive from same progenitors cells than 

neurons (neural progenitor cells; NPCs) and represent around 20-40% of glial cells. They have many 

function including neurotransmitter recycling, provisions of nutrient to neurons, control of 

extracellular ion balance, but also brain repair processes and immune clearance in response to injury, 

neurotoxic agents, or infection 434. Microglia are resident macrophage cells in the brain involved in 

maintenance of brain homeostasis, pruning of synapses and active immune defense.  For a long time 
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thought to derive from hematopoietic stem cells like others macrophages, they in fact derived from 

erythro-myeloid precursors in the yolk sac, having characteristic gene expression profile compared to 

others myeloid cells435 . They are primary involved in the tight regulation of brain homeostasis, being 

very sensitive to any pathological change and allowing clearance of unnecessary or neurotoxic 

components including plaques, damaged or unnecessary neurons and synapse, and infectious agents 

435. Oligodendrocytes mainly provide support and insulation of neuronal axons, producing the myelin 

sheath which wrap around axons allowing fast electrochemical action potential transmission to 

synapses. They also give metabolic and trophic support to neurons producing neurotrophic factor and 

insulin like growth factor-1 436. Like for neurons and astrocytes, they derive from NPCs. Besides these 

glial cells, there are also other cell types in brain that form the vascular system, maintaining the blood 

brain barriers including the vascular endothelial cells and pericytes. All of these non-neuronal cell types 

are affected in AD, but their contribution to AD-associated neurodegeneration remains incompletely 

understood 437. Overall this cellular heterogeneity and tight cell-cell interactions allow integrity of the 

brain and its complex functions including synaptic plasticity and learning. A drawback of this complex 

and plastic interactions is that deregulation of one of this cellular interaction can be defective for the 

whole system. This also highlights the importance to take into account this cellular heterogeneity and 

interactions when modeling influence of genetics risk on brain functions and on AD pathogenesis.  

V.3. How  Alzeihmer’s disease alter brain function ? 

In AD brain, there is a progressive neuronal loss (neurodegeneration) characterized by toxic 

amyloid deposition in synapses and tau tangles accumulation in neurons. This leads to neuronal and 

synaptic loss, coupled with inflammation triggered by the proteotoxicity, leading to progressive 

memory loss and cognitive function impairment. The early mechanisms driving this defective 

accumulation is not fully understood, but key pathophysiological mechanisms are related to Abeta 

oligomers and tau tangles accumulation, as well as the associated neuroinflammation.  

V.3.a. Amyloid beta accumulation 

Probably the most important mechanism of AD development is defective Amyloid Precursors 

protein (APP) processing. Amyloid beta (Abeta) are byproduct of the APP cleavage in synapse.  APP is 

a transmembrane protein playing essential role in nervous system development, synaptogenesis as 

well as modulation of synapse plasticity, and thus in learning and memory438. In normal APP processing, 

APP are cleaved by catalytic enzymes namely Alpha-secretase, Beta-secretase and Gamma-secretase 

following 2 different pathway. First processing pathway involve the Alpha-secretase and are non 

amyloidogenic. In the second pathway, APP are subsequently cleaved by Beta-secretase and the 

Gamma-secretase which lead to Abeta peptide formation. Abeta structure have the particularity to 

72



INTRODUCTION 

 

73 
 

oligomerize which in high concentration are toxic for synapses and neurons activity producing ROS 

production, inflammation, and synapse loss439–442. Most specifically, the suboptimal cleaving by 

Gamma-secretase can produce elongated form of Abeta (Abeta42) are particularly important in AD 

development. Ab42 is found enriched in early onset AD patients, who carrier defective mutation of 

APP or catalytic subunits of the Gamma-secretase PSEN1 and PSEN2443–445. Abeta42 have a particular 

structure and conformation decreasing its solubility,  leading to significant increase oligomerization, 

and fibril (Abeta plaque) formation. More than being toxic for synapse, Abeta plaque appear to be also 

a major catalyzer of soluble Abeta oligomers, which can spread across the brain446,447.While Abeta have 

important role in synapse signaling and neurotransmission regulation at low concentration, their 

increase concentration and aggregation into soluble oligomers are deleterious for synapse. Indeed, 

Abeta oligomers bind to several synapse receptors, notably in post synaptic regions, impairing synapse 

conformation and composition, as well as neurotransmission. Local increase of Abeta concentration 

can be beneficial for synaptic plasticity regulation, but become detrimental when the Abeta 

accumulation is systemic like in AD442,448. Abeta level is not strikingly correlated to AD severity, but 

rather a prognostic of future AD onset. Some healthy elderly have amyloid plaque without have 

dementia or significant AD symptom 448.  Ab deposition start decades before first symptoms and are 

not always associated to AD449. Then, Abeta accumulation appear to be necessary but not sufficient to 

explain AD pathogenesis. Further diseases development are likely to be driven by the pathological Tau 

hyperphosphorylation and aggregation, as well as the induced neuroinflammation.  

V.3.b. Tau tangles formation 

The other important pathophysiological mechanism recognized in AD is the accumulation of 

pathological Tau conformation. Tau is encoding by the gene MAPT, and are a microtubule binding 

protein stabilizing axonal microtubule and playing important role in intracellular transport notably 

mitochondrial and neurotransmitter transport to synaptic regions450. Tau is also found in postsynaptic 

region, in dendritic spines, where it can play important role in glutamate receptor scaffolding 

regulation. Once phosphorylated, Tau loose affinity to microtubule generating free Tau able to twist 

around each other’s in paired helical fragments and form neurofribrillary tangles (NFTs). Loss of 

microtubule affinity disrupt cytoskeleton and intracellular transport, impacting notably the transport 

of mitochondria and glutamate receptors to post synaptic region, reducing ATP production, calcium 

buffering and thus neurotransmitter containing vesicles release. Furthermore, pathological tau can 

accumulate in dendritic spines, where they can directly affect synaptic transportation and post 

synaptic excitability451. The progressive formation of NFTs next aggregates into paired helical filaments,  

and spread through the peripheric part of stroma. Finally, NFT lead to proteotoxicity and neuronal loss,  

defect in axonal transport, mitochondrial damage and stress, and microglial activation / 
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inflammation451 . This NFT accumulation are good indicator of neurodegeneration and strongly 

correlate with AD cognitive defects452 .  However, the causal mechanism leading to Tau 

hyperphosphorylation and aggregation remain not well understood.   Abeta oligomers have been 

shown to promote Tau pathological conformation453,454  but this element is not sufficient to explain 

Tau hyperphosphorylation as Ab accumulation have found in healthy elderly people without tau 

associated defects. Others factors have been identified promoting Tau hyperphosphorylation related 

to the imbalanced regulation of protein kinases and phosphatases notably the glycogen synthase 

kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A)455,456. Then, understand the critical mechanism 

leading to Phospho-Tau accumulation appear crucial to better understand AD development.  

V.3.c. Neuro inflammation 

In addition to amyloid plaques and NFTs, neuroinflammation also plays an important role in 

AD. Like for tau tangles, this chronic inflammatory state in brain is strongly correlates with AD 

severity457. Neuroinflammation relies on microglial and astrocytes activation in response to neurotoxic 

agent.  They allow phagocytosis of toxic product and release of cytotoxic factors to clean injured sites. 

Astrocytes and microglia play a major role in preventing Abeta mediated neurotoxicity. Indeed they 

are both involved in Abeta clearance through their internalization and degradation capacity. They 

notably express high levels of the Receptor for Advanced Glycosylation End (RAGE) which recognizes 

Abeta to degrade it through the endolysosomal  process. However, after a certain concentration and 

specific AD related conditions, glial cells are overburdened, their benefical role switch off and they may 

even show a pernicious role in Abeta processing, contributing to the Abeta fibril formation and chronic 

neuroinflammation107 . Microglial can remain long time in its activated form specially if neurotoxic 

agent is still present as for Abeta deposits, producing proinflammatory cytokines and toxic molecules 

which can worsen neurodegeneration and brain damage. As exposed previously, the pathological 

neuroinflammation can be mediated by the microglial activation in response to APP processing458  or 

Abeta deposits accumulation459  but others studies suggest others factors influencing 

neuroinflammation in AD like obesity and traumatic brain injuries460. GWAS studies have identified 

several genetics risk of AD falling genes express in immune cells and related to microglial functions 

including TREM2, SCIMP,  MS4A3, HLA-DRA, HLA-DRB1 confirming important role of microglia in 

AD39,461–463. Futhermore, the low grade systemic inflammation seen in normal aging or associated to 

obesity, could also play an important role in the priming of microglial activation through 

proinflammatory cytokines production and diffusion through the blood brain barrier460,464,465. Both 

inflammaging condition, and peripheral chronic inflammatory diseases are associated with accelerated 

neuroinflammation and higher AD risk464,466,467. Then, neuroinflammation as well as microglial and 

astrocytes activation appear to be important actors in AD pathogenesis. 
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V.3.d. Calcium signaling and AD 

Another important early molecular mechanism found altered in AD is the calcium homeostasis. 

Calcium homeostasis and calcium related intracellular signaling are key mechanisms to regulate 

neuronal activity. Indeed, Ca2+ participate to membrane depolarization and thus electrochemical 

signal transmission in neurons through plasma membrane receptors and voltage-dependent ion 

channels468. One important process for neurons after its depolarization is its rapid repolarization to be 

mobilized again and synchronized with others neurons468 . This is allow through delivery of Ca2+ in 

extracellular matrix through ATP dependant pumps or Na+/Ca2+ exchanger. Fine tune regulation of 

calcium channel and exchanger is crucial for neurons to have this appropriate equilibrium between 

neuronal excitability (depolarization) and fast repolarization / return to basal level. Neurons have 

important Ca2+ dependent signaling pathways to couple Ca2+ with their biochemical machinery. 

Notably, Ca2+ dependent kinases activation allow long term potentiation (LTP) of neurons, a key 

mechanism of memory and learning468,469. Moreover, Ca2+ signal allow also to communicate between 

the synapse and the nucleus through gradient diffusion into nucleus, where Ca2+ can activate the TF 

CREB and control number of target genes. Then, calcium homeostasis and related signaling are crucial 

actors for appropriate neuronal activity and brains function including memory and learning. 

Nevertheless, both calcium homeostasis and calcium related pathway appear altered at early 

stage in AD interacting with the amyloidogenic pathway470. Indeed, several studies have found that 

basal Ca2+ level in neurons close to Abeta deposits are increase compared ton non pathological 

neurons471,472. Mechanisms behind this phenomenon are unclear but predominant studies have found 

that Abeta oligomers could affect calcium homeostasis through its interactions with synaptic calcium 

channels, or by increasing Ca2+ permeability of the membrane473–476 . But others evidence support an 

invert relationship, where calcium dyshomeostasis arise independently of Abeta but promote Abeta 

accumulation. Dreses-Werringloer et al have shown that a genetic variant in the Ca2+ homeostasis 

modulator 1 (CALHM1), a voltage-gated ion channel which promotes Ca2+ entry from the extracellular 

ambient, may increase the risk of AD while increase Abeta levels by interfering with Ca2+ 

permeability477 . Furthermore, increase of Ca2+ can stimulate metabolism of APP478–480 . Several studies 

have also shown that an increased calcium influx/signaling increase tau phosphorylation in neurons, 

further highlighting implication of calcium deregulation in AD pathogenesis479,481–483.  

One of the main consequences of disrupted Ca2+ signaling is alteration of synaptic plasticity 

and cell death484. Neurons near Abeta plaques have an increase activity (hyperexcitability) resulting 

from the reduced control of intracellular Ca2+ level485 . Concordant with a role of Abeta in calcium 

mediated cognitive functions, Abeta oligomers emergence is correlated with reduced LTP 486–488, and 
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LTP defect can be reversed by antibody against Abeta488 . Excess Ca2+ basal level can also activate 

mitochondrial released of cytochrome C inducing apoptosis cascade484. In support to this hypothesis, 

over expression of the antiapoptotic Bcl2 (reducing Ca2+ release by mitochondria), improve cognition 

in a mouse model of AD, before any sign of neurodegeneration 489. 

What are the cellular mechanisms contributing to this calcium deregulation in AD remain 

unclear. Even if Abeta itself can alter calcium homeostaisis as seen previously, some studies have 

shown calcium deregulation before amyloid beta plaque detections 490–492. Overall, these evidences 

shows the great importance of calcium dyshomeostasis and signaling in AD onset/progression. 

 

V.4. Non genetics factors of AD 

While genetics risk contribute to a major part of AD, it fails to explain around 30% of AD cases. Indeed, 

AD is a multifactorial diseases with sporadic onset, indicating that others factors influences their 

development including environmental, age related and epigenetics factors. 

Different environmental exposure have been shown to modulate risk of AD. It was notably 

shown that repeated exposure to chemical agent including several heavy metals (including aluminum, 

arsenic, and mercury), particulate air, and some pesticides contribute to AD development 493. Sleep 

deprivation appear also an environmental factors influencing Abeta accumulation, and could then 

increase AD risk494,495 . On the other hand, cognitive ability and educational attainment appear 

protective factors against AD development 39. These evidences of environmental influence highlight 

the importance to consider environmental exposure for AD prevention. 

Other pathological conditions can also contribute to AD risk. Having had a stroke increase by 

50% the risk to have AD 496. T2D, which increase stroke probability, increase also risk of developing 

AD497. Systemic inflammation induced by obesity or rheumatoid arthritis, or low grade chronic 

inflammation observed in normal aging (inflamm-aging), increase risk of AD development, and further 

support importance of inflammation in AD465,498–501. To support that, anti-inflammatory treatment TNF-

alpha inhibitor reduces AD onset in arthritis rheumatoid patients502.  In addition to inflamm-aging, 

several others aging related conditions have shown to contribute to AD development: Increase 

oxydative stress503, DNA damage504,505, but also increase senenescence506 are others age related factors 

contributing to AD. Notably, senolytic drug-mediated removal of senescent Abeta-associated 

oligodendrocytes progenitors have been shown to improves cognitive functions while reducing 

neuroinflammation and amyloid beta load in an AD mouse model506.  
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In other conditions linked to aging, the somatic mutation take attention these recent years, 

because somatic mutation in neurons was shown increase with age and sensitive to AD 

development55,59. In a recent study, putative deleterious somatic mutation was differentially found  in 

27% of AD brains compared age matching healthy brain, with specific enrichment for genes 

contributing to tau related AD pathogenesis, including PIN159. These results reconciling the strong 

genetics effect in AD susceptibilities and the late onset and sporadic feature of AD.  

Epigenetic alteration is also a hallmark of aging and could have important role in AD. In aging 

brain, a DNA hypomethylation has been shown in the APP promoter82. In AD brains, H3K27ac and 

H3K9ac marks correlate with upregulation of chromatin and transcription related genes that 

contributes to Abeta42-driven neurodegeneration82. H3K9me3, mediating heterochromatin 

condensation, are also enriched in AD brains and lead to downregulation of associated genes involved 

in synaptic transmission and plasticity83. AD synaptic dysfunctions are strikingly associated with 

miRNAs expression profile alteration. The best characterized miRNA biomarker is probably miR-125b 

upregulation in AD71 and influencing the essential synaptic glycoprotein synapsin-2 (Syn-2) 

contributing to APP processing and Abeta degradation507,508, as well as tau Hyper-phosphorylation 509. 

Too few studies have been made to appreciate the putative causal role of this epigenetics alteration 

in AD pathogenesis but require more attention regarding importance of epigenetics in others age 

related diseases. In any case, the epigenetic mechanisms identified in AD related features could be 

critical targets to better consider in AD diagnosis or management.  

Together, these evidences of environmental, epigenetics, or age related factor give us insights about 

the critical non-genetics influences in AD pathogenesis and highlight important biological processes 

involved in AD, including inflammation/immune system deregulation, senescence, somatic mutation 

emergence and epigenetics alteration, which should be consider when modeling AD. 

V.5. Genes involved in AD 

The genetics influence in AD is high. The heritability is estimated at 60-80 % of all AD cases 

based on parental diagnosis linkage510 . The early onset AD (EOAD, before 65 years old), representing 

10% of all AD onset,  have even more  heritability ranging between 92% to 100%444 . The known 

mutations involved in EOAD have high penetrance   and are located in genes contributing to APP 

processing/ Abeta formation (PSEN1, PSEN2, and APP itself), but explain only 5-10% of EOAD case. The 

90-95% remaining are still unexplained suggesting non-mendelian genetics or epigenetics 

transmission444. 

To explain influence of genetics in late onset sporadic AD, GWAS are used allowing to identify 

loci associated to AD but also genes and biological process potentially implicated in AD35,39,39,511,512. In 
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2019, a meta-analysis have identified 29 risk loci, implicating 215 potential causative genes and shown 

the important role of genes express in immune related cell types and regulating lipid related processes 

and processing of APP39 . Then, two subsequent studies increasing meta-cohort size identified 

respectively 37 and 38 risk locis still highlighting strong role of  microglia, immune cells and protein 

catabolism while discovering new genes candidates including CCDC6, TSPAN14, NCK2 and SPRED266,511. 

The most recent meta analysis led by Bellenguez et al, found 75 risk loci associated with AD, of which 

42 newly identified35. Pathways enrichment analysis on genes associated to these variants further 

validate importance of amyloid and tau pathways as well as the role of microglia related process in AD 

pathogenesis. Importantly, the vast majority of risk loci fall in noncoding regions mostly in intronic or 

intergenic region39. Only 2% are in exonic region, and 1% as non-synonymous mutation. Those 

noncoding variants are enriched for active regulatory regions and tissue specific eQTLs, highlighting 

their role in regulating transcriptional activity, but ask further consideration before assigning them to 

a gene 39. It is for this reason that gene prioritization analysis have done integrating several tissue 

specific regulatory information to prioritize genes in order to link risk loci to putative causal gene. In 

the last meta-analysis, gene prioritization analysis have highlighted 31 newly associated genes involved 

in putative new AD associated processes including tumor necrosis factor alpha pathway. Furthermore, 

they construct a genetics risk score integrating all this newly identified risk loci to predict AD onset, 

and show that this score was able to predict 1.6 to 1.9 fold increase risk of AD from the lowest to the 

highest decile. Together these GWAS meta-analysis highlight around 40-80 putative genes involved in 

AD with important role in APP processing, tau related process, lipids metabolism, endocytosis and 

immune system process including microglial activation. 

The first genetics risk locus is APOE, well characterized since its discovery in 1993513. Its allelic 

version ε4 (APOE4) is present in 14% of the total population431, while found in between 40 to 80% of 

AD cases514. It increase by 3- to 15-fold the AD risk depending of the zygotic status431.  APOE is an 

apolipoprotein able to transport lipids within or between cells and is involved in the clearance of Abeta 

by glial cells515. Furthermore, The APOE4 isoform have been shown to promote the lysosomal 

cholesterol accumulation in glial cells while impairing extracellular matrix homeostasis67. It has also 

been shown to promote accumulation of extracellular and intraneural Abeta516. 

The second most associated risk loci is BIN1, encoding for an adaptator protein mostly involved 

in lipid membrane dynamics including endocytosis regulation, but have also a role in intracellular 

trafficking as well as cellular excitability517–519 . Some studies have been made since its discovery to 

decipher its role in AD but no consensus are still emerged. I will further develop in next part our 

understanding of BIN1 and interest to better characterize its role in brain and AD. 
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Others important risk loci have been robustly associated to AD including CLU, TREM2, and 

PTK2B, involved in previously mentioned AD related process. CLU is an extracellular chaperone 

inhibiting amyloid fibrils formation by sequestering the oligomeric forms520,521. TREM2 is a membrane 

receptor express in microglial recognizing Abeta42, which mediate its uptake and degradation by 

microglial461,522. For PTK2B, no obvious link with AD process was identified and need then further 

studies to its role in pathogenesis. This remark can be done for a majority of newly AD associated genes 

offering new perspective on our AD understanding.  

V.6. Understand early mechanism of AD through BIN1 gene function study 

Amyloid plaque, NFTs, neuroinflammation and calcium deregulation are central mechanism 

behind AD pathogenesis but the initial factor leading to this pathophysiological mechanism remain 

unclear. Even if amyloid plaques formation start decades before AD symptoms, suggesting critical 

causal mechanism, what predispose certain individuals to develop Abeta plaques mediated 

neurotoxicity remain to be determined. As shown in previous section, studies of genetics risk give us 

cues about what genes or biological process are crucially involved in AD development. GWAS studies 

clearly confirms the importance of gene regulating APP processing (ADAM10, PSEN1, PSEN2) and 

Abeta management by microglia (APOE 515,516, CLU 520,522,523, TREM2461 ), but some genes identified 

through GWAS do not directly links with Abeta pathway, indicating either independent mechanisms, 

or upstream non-direct regulators of Abeta pathway39 . This is the case for BIN1 associated variants, 

which were significantly associated with total Tau level and phospho-Tau in the cereobrospinal fluid 

but not with Abeta level 524. BIN1, similarly to other AD risk genes including  PICALM, CD2AP, CD33, 

EPHA, RIN3, MEF2C, and PTK2B, are involved in endosomal/membrane trafficking, suggesting 

important role of this biological process in AD pathogenesis in an Abeta independent manner525–528 

While BIN1 is the 2nd most associated genetics risk locus, little is known about its role in AD. 

Main variant associated to BIN1 increase by 17% the risk to have AD and are found across 40% of the 

population35. Because AD associated variants fall directly in BIN1 intronic region or colocalize with cis-

eQTLs regulating BIN1 expression66 , it appears evident than AD associated variants impact BIN1 gene 

expression directly, suggesting important role of this gene in AD development. BIN1 is ubiquitously 

express in the body, with highest expression in skeletal muscle and the brain 529. BIN1 gene is composed 

of at least 20  exons subject to intense splice events, having then several isoforms and tissue specific 

pattern of expression. Isoform 1 to 7 are specifically express in the brain, isoform 8 in skeletal muscles, 

while isoforms 9 and 10 are ubiquitous530–536 . 

BIN1 is an adaptator protein of the Bin/Amphiphysin/Rvs (BAR) family regulating lipid 

membrane dynamics537,538. All isoforms are able to induce or sense membrane curvature through their 

79



INTRODUCTION 

 

80 
 

BAR domain, giving them a wide range of cellular functions in the control of cell membrane curving, 

shaping and remodeling539. However, only the neuronal isoforms have the CLAP domain mediating 

interaction with clathrin and AP2, two important protein involved in clathrin-mediated 

endocytosis535,538,540,541. Then, this information suggest specific role for BIN1 regulating endocytosis in 

brain. 

Relatively few studies have been made since its discovery to decipher the role of BIN1 in AD.  

In brain, BIN1 is express mostly in oligodendrocytes, glutamatergic neurons, microglia and GABAergic 

neurons530,542,543. In neuron specifically, BIN1 have been shown to negatively modulate endocytic 

flux517,  and we recently found that BIN1 isoform 1 was able to regulate early endosome maturation 

and trafficking517,544. It has also been shown to participate to neuronal excitability by interacting with 

L-type voltage-gated calcium channels (LVGCCs)545 . Recently, it have been shown regulating 

presynaptic neurotransmitter release with a role in memory consolidation542,546. In microglia, BIN1 

could be involved in exosomes secretion547 and have a role in regulating inflammation548. In 

oligodendrocytes, BIN1 could have role in membrane remodeling contributing with the process of 

myelination530. However, studies of the role of BIN1 in non -neuronal cell types of the brain remain 

elusive.  

Role of BIN1 in AD remain unclear. In AD brains, BIN expression has controversially been shown 

to increase and decrease543,549,550 . Indeed, one study have shown an increase total mRNA expression 

in  frontal cortex of AD brains while others have found a decrease of mRNA in AD brains from multiple 

datasets and brain region543 . To explain this putative contradiction, another study have shown that 

the protein level of the neuronal specific BIN1 isoform 1 was decrease in AD brain, but compensate by 

an increase of the ubiquitously express BIN1 isoform 9551. Furthermore, we do not know if this 

expression change occur similarly in all brain cell types or show cell specific expression alteration. Then, 

further analysis on clinical cell type specific transcriptomic data is needed to really decipher the cell 

type specific expression of BIN1 in brain and its alteration in AD.  

Nevertheless, some preliminary studies have tried to decipher role of BIN1 in AD development. 

Studies related to role of BIN1 in Abeta accumulation appears inconclusive.  In primary works, 

researchers have studied the role of BIN1 in regulated APP processing and show that a BIN1 

knockdown in neuronal cultures can increase Abeta generation through β-secretase (BACE1) 

sequestrating in early endosomes518,552 . However, in our previous work in drosophila model of AD, we 

found that human BIN1 deletion do not alter significantly APP processing while BIN1 dysregulation 

affect endocytosis and promote neurotoxicity544. Furthermore, another study in AD mouse model have 

also found that reduction of BIN1 expression, do not affect amyloid pathology553.  
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More evidence have been shown for role of BIN1 in tau pathology. BIN1 can interact with Tau 

and its expression correlate with Tau level and tau tangles pathology in AD brains 549,551. In a co-cultured 

model of tau propagation, Calafate et al have shown that knockdown or overexpression of neuronal 

specific BIN1 isoform 1 respectively promotes or inhibits Tau propagation in neurons517. They further 

show that loss of BIN1 increase endosomic flux, which increase Tau aggregate internalization and 

release into cytoplasm inducing Tau propagation. These results suggest that neuronal BIN1 have a 

protective role in preventing Tau pathology, and its downregulation as observed in AD brains could 

induce Tau pathology. Concordant with that, a recent study have shown that human BIN1 is able to 

recover human Tau induced cognitive defect in transgenic mice, preventing Tau mislocalization and 

somatic inclusions in the hippoccampus546. Authors further show that BIN1 can dynamically modulate 

its interaction with Tau through phosphorylation to compensate AD related Tau accumulation546.  

 In another study regarding effect of overexpressing neuronal BIN1 isoform 1 in cultured rat 

hippocampal neurons, authors shows that upregulating BIN1  induced neuron hyperexcitability, 

increasing frequency of synaptic transmission, and increasing calcium transients showing neuronal 

hyperactivity545. They further suggested that over-expressed BIN1 could indirectly interact with L-type 

voltage-gated calcium channels (LVGCCs) through Tau. These  calcium channels are involved in calcium 

transients and are known to be stabilized in membrane of cardiomyocytes thanks to BIN1519,554, which 

could then explain this BIN1 mediated neuronal hyperactivity. They finally show that Tau mediate the 

BIN1-LVGCC interaction being bound by both proteins, and that is reduction prevent network 

hyperexcitability operate by BIN1 overexpression545. 

Role of BIN1 in neuronal excitability was further shown recently but regulating another 

pathway. Indeed, by conditionally deleting BIN1 in neurons, De Rossi et al have shown that BIN1 

localize preferably in presynaptic sites of glutamatergic synapse in hippocampus, and that BIN1 are 

able to regulate the releases of neurotransmitter vesicles. Neuronal BIN1 deletion reduce synapses 

density and presynaptic protein cluster formation, while increase synaptic vesicles. Furthermore, these 

alterations in synaptic transmission in the center of memory consolidation (hippocampus) are 

concordantly associated with defective spatial learning and memory ability of Bin1 null mice. This 

evidence support a new role of BIN1 in synaptic function with putative effect on AD relevant coginitive 

process. 

Taken together, these previous studies highlight the broad range of possible roles of BIN1 in 

brain/neurons but fails to define a clear mechanism behind BIN1 related AD susceptibility. All these 

previous studies are biased toward a certain hypothesis, which exclude discovery of putative 

unrecognized role. Furthermore, they mostly consider study of neurons, in 2D culture or non-human 
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model, which could miss the real BIN1 influence in human brain and associated cellular heterogeneity 

and interaction. Finally, studies overexpressing BIN1 can exaggerate BIN1 activity failing to highlight 

patho physiologically relevant mechanism. The inconsistency of the results exposed above, notably in 

the controversial role of BIN1 in APP processing, further highlight the need to study BIN1 in an 

unsupervised way.  Then, to decipher the role of BIN1 in AD related brain function while being liberated 

of previous biased, we implemented a new modeling approach, integrating different human relevant 

brain models, unsupervised investigation and functional characterization. This approach leveraged 

single-cell transcriptomics to investigate the cellular effect of BIN1 deletion on both neuronal culture 

and cerebral organoid derived from human induced pluripotent stem cells (iPSC). 

V.7. iPSC derived neuronal models 

Transgenic mice have been largely used since decades to model AD, and have allowed clarifying 

several pathophysiological mechanisms. First mouse model was developed in 1995 based on the 

overexpression of human APP harboring familial AD mutation.  Since then, varieties of mouse AD 

models have been developed allowing demystify or consolidate role of Abeta deposit and pathological 

Tau conformation in neurodegeneration but also the important role of microglia in pathological Tau 

spreading or  the role of astrocyte activation and neuro-inflammation in synaptic dysfunction555. 

However, these in vivo models based on familial AD mutations or AD genes overexpression, failed to 

accurately mimic biology of AD, especially the sporadic form which not rely on severe AD gene 

mutation, but rather at a progressive development depending of several early cellular or molecular 

mechanisms.  These shortcomings of current animal models are illustrated by the fact that all 

promising preclinical therapies failed when translated into clinics. It is then necessary to develop new 

models of AD, which better integrate human and sporadic AD specificities.  

Here we used neural progenitors cells (NPCs) derived from human iPSC (hiPSC) to generate 

neuronal bidimensional culture and brain organoid that have their own set of advantages compared 

to animal models. First, human iPSC can be easily manipulated and edit genetically allowing assessing 

impact of risk loci or role of gene in AD. Furthermore, patient derived iPSC can be used directly to 

assess the effect of population-relevant genotype in cell activity. Second, iPSC can be reprogrammed 

in a variety of brain cell types including neurons, astrocytes, microglia and blood barrier endothelial 

cells, allowing deciphering role of a gene or variant in each specific cell type. Such human derived 

cellular model better model human susceptibilities, exemplified recently on the study APOE4 AD risk 

allele67 .  Indeed, authors of this study have shown that APOE4 have human specific effect on gene 

expression on microglia and astrocytes when compared to same cell types derived from APOE4 

engineered mouse model. Finally, used of human derived brain organoid can recapitulate both cellular 

heterogeneity and interactions present in brain while kept human specific genetics influences437. 
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We studied thanks to these models effect of the loss of function of one or two copies of the 

BIN1 gene (BIN1+/- and BIN1-/- respectively) on neuronal functions in the context of brain relevant 

cellular heterogeneity and structure (the cerebral organoid model), and in the context of cell 

autonomous activity, using pure hiPSC derived neuronal culture (hiNs). For this 2nd study model, we 

leveraged scRNA-seq to assess cellular heterogeneity and cell type specific effect of this BIN1 deletion 

in these two different models, and integrate results with AD brain scRNA-seq data to assess 

resemblance with AD related cellular activity and signaling.   

83



RESULTS 

 

84 
 

RESULTS 

I. EPIGENETICS PROGRAMMING of HSPCs 

The prenatal period is a critical period of rapid growth and differentiation where tissue acquire 

their structure and functions. Environmental challenge, during this period, like over exposure to 

nutrient leading to LGA neonates, predisposes individual to develop age related and metabolic 

diseases, but the molecular mechanisms remain unclear. Several durable epigenetics alterations are 

found in early exposed tissue suggesting epigenetics programming of these diseases. Notably, my PhD 

supervisors are previously found a global DNA hypermethylation in LGA HSPC targeting genes 

regulating stem cell function suggesting early alteration of the hematopoiesis. Alteration of the 

hematopoietic system play an important role in the development of ACDs, and can be program as early 

as in utero following nutrient stress with long term consequences on hematopoietic functions. Then, 

based on these evidence, we hypothesized that early environment leading to excessive fetal growth 

affect hematopoietic compartment plasticity through epigenetics remodeling, thus modifying core 

functions of hematopoiesis and linking excessive fetal growth to increase sensitivity to metabolic and 

age-related diseases later in life. To challenge this hypothesis, we performed integrative analysis of 

DNA methylome, transcriptome and chromatin accessibility at single-cell resolution in early exposed 

HSPC in order to validate the DNA epigenetics alterations observed previously and evaluate their 

impact on HSPCs functions and plasticity.   

We conducted a first set of analysis highlighting an epigenetics programming of the quiescence 

signaling in LGA HSC that we published recently. As a first step, using DNA methylation and scATAC-

seq data, we further characterized the epigenetic memory of LGA HSPCs and predict impact on HSPCs 

function. For that we increase our number of cord blood derived HSPC DNA methylation data adding 

16 CTRL and 16 LGA samples. To better highlight the influence of CpG methylation on gene expression, 

we implemented a new strategy integrating tissue specific regulatory annotation to weight each CpGs 

and infer regulatory link between CpG and neighbor genes. We confirmed that the DNA 

hypermethylation in LGA HSPCs target stem cells and growth signaling pathway. We also performed 

scATAC-seq on 5 LGA and 6 CTRL samples to validate the epigenetics alteration at cell level with 

another epigenetics layer; the chromatin accessibility. It also allowed us to validate the regulatory 

potential of differentially methylated CpGs (DMCs). Thanks to this integration, we found that both DNA 

methylation change and chromatin rearrangement occur in LGA in HSC-specific open chromatin region.  

As a second step, using scRNA-seq on 6 LGA and 7 CTRL samples, we assessed the impact on 

transcription at subpopulation level. We further integrated with the epigenomics data to decipher if 

direct link can been found between epigenetic alterations and gene expression change. We observed 
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a concordant decreased expression of genes of an epigenetically altered regulatory network governing 

by EGR1, KLF2 and KLF4 TFs regulating activation/differentiation of HSC. Finally, using both scRNA-seq 

data and in vitro differentiation assay, we deciphered the functional impact on HSPCs observing both 

a decreased HSC abundance in LGA neonates and decreased HSC-derived colonies, suggesting a 

reduced ability for HSC to remain undifferentiated.  

To further validate these results and challenge the hypothesis that LGA HSCs have a decrease 

regulation of their differentiation, I performed another set of analysis leveraging supplemental 

information of already generated scRNA-seq data but also generated new one using gene silencing 

experiments, cytokines stimulation, and single-cell multi-omics assay. Notably, I tested using these 

others approaches the hypothesis that LGA HSCs have a differentiation bias in response to 

stimulation(i), and challenged our scRNA-seq and scATAC-seq results using the recent single-cell 

multimodal assay with new samples(ii). These complementary analyses confirm the HSC differentiation 

bias in LGA by using two independent approaches. They also validate the KLF2 influence of 

downstream targets genes based on gene silencing experiment and single-cell multimodal analysis, 

and support the role of KLF2 and EGR1 related regulatory network on regulating response to cytokines 

stimulation and HSC activation. 
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Abstract: Excessive fetal growth is associated with DNA methylation alterations in human 

hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We 

implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, 

and in vitro analyses to functionally link DNA methylation changes to putative alterations of HSPC 

functions. We showed in hematopoietic stem cells (HSC) from large for gestational age neonates 

that both DNA hypermethylation and chromatin rearrangements target a specific network of 

transcription factors known to sustain stem cell quiescence. In parallel, we found a decreased 

expression of key genes regulating HSC differentiation including EGR1, KLF2, SOCS3, and JUNB. 

Our functional analyses showed that this epigenetic programming was associated with a decreased 

ability for HSCs to remain quiescent. Taken together, our multimodal approach using single-cell 

(epi)genomics showed that human fetal overgrowth affects hematopoietic stem cells’ quiescence 

signaling via epigenetic programming. 

Keywords: Epigenomics; Single-cell; Stem-cells; Fetal programming; Hematopoiesis 

 

1. Introduction 

Hematopoietic stem cells (HSC) are involved in essential processes such as 

inflammation, cardiovascular repair, and immunity throughout the entire lifespan [1,2]. 
Thus, alterations in HSC’s ability to self-renew and to adequately produce differentiated 
progeny have been suggested to contribute to the onset and progression of age-related 

diseases such as cancer and cardiovascular diseases [3,4]. Systemic alterations or the 
action of various stressors like aging [5,6] can result in alteration of HSC destiny, and 

ultimately hematopoietic functions. The early mechanisms that control their long-term 
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functions in humans are not well understood, in part due to the diversity of phenotypes 
and behaviors of HSCs [7]. 

In mice, a maternal high-fat diet during gestation limits fetal hematopoietic stem and 

progenitor cells (HSPC) expansion and ability to repopulate while inducing myeloid-
biased differentiation [8]. In humans, a limited number of studies have been conducted. 

Fetal growth was shown to alter the number of circulating CD34+ HSCs [9,10]. We 
previously described a global increase of DNA methylation in cord blood-derived CD34+ 
HSPCs from large for gestational age (LGA) infants compared to neonates with normal 

birth weight [11]. Still, the functional impacts of these early epigenetic alterations remain 
to be elucidated. Such an effort is essential to determine how these epigenetic 

modifications could mediate the association between early-life exposures and the 
induction of persistent life-long functional changes within the hematopoietic system. 

We conducted a multimodal analysis combining single-cell epigenomics, single-cell 

transcriptomics, and in vitro analyses to link the DNA methylation alterations observed 
in LGA neonates with functional alterations in human cord blood-derived HSPCs. We 

developed novel analytical approaches to improve the integration of epigenomic and 
transcriptomic data. We found that the DNA hyper-methylation observed in LGA HSPC 
is associated with an HSC-specific decreased chromatin accessibility and gene expression 

of key genes involved in the HSC quiescence signaling as well as an alteration of the HSC 
colony-forming capacity. 

2. Results 

2.1. Optimized Methylation Gene Set Analysis Reveals Association between LGA DNA 
Hypermethylation and Stem Cell Differentiation Pathways 

To confirm the LGA-associated DNA hypermethylation we previously observed, we 
significantly increased the power of our analysis. We expanded our original study 

through additional patient inclusions, thereby doubling the size of our cohort [11]. Using 
the HELP-tagging assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR), we 
generated genome-wide DNA methylation data on 16 CTRL and 16 LGA cord-blood 

derived human CD34+ HSPC samples. We independently retrieved in this new dataset 
the global DNA hypermethylation initially found in LGA compared to controls [11] 

(Figure 1A). Then, to increase our detection power, we pooled both datasets and detected 
a total of 4815 differentially methylated CpGs (DMC) with 4787 CpGs hypermethylated 
and 28 CpGs hypomethylated in LGA (n = 36) compared to CTRL (n = 34, p-value < 0.001 

and |methylation difference| > 25%; Figure 1A, Supplemental Table S1). This new set of 
DMCs was then used throughout the following analysis. 

As the functional interpretation is performed at the gene level, each CpG (or DMC) 
must be linked to a specific gene. Thus, our ability to adequately infer the regulatory effect 
of a CpG and its target gene will affect our ability to identify relevant pathways. Standard 

analytical approaches usually rely on the distance between CpG and transcription start 
site (TSS) of the targeted gene and often only consider the top candidate DMC per gene, 

not taking into account the cell specific genomic context. Therefore, we refined the CpG-
gene association to optimally assess the influence of DNA methylation changes on gene 
expression and enhance functional interpretation. We built a novel gene-methylation 

score considering (1) the distance between TSS and CpG; (2) the CpG overlap with 
expression quantitative trait loci (eQTL) annotation, as eQTL information allows us to 

identify tissue-specific genomic region links to gene expression changes; and (3) the 
regulatory annotation (e.g., Promoter, Enhancer) based on cell-specific histone marks [12] 
and on the Ensembl Regulatory database, as we know that the relationship between 

change in DNA methylation and change in gene expression will depend on a cell-specific 
genomic context (Figure 1B). We established 756,470 CpG-gene associations including 

34% of them found through eQTL annotation. We then summarized the CpG information 
at the gene level, generating a gene-methylation score for each gene (n = 24,857, 
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Supplemental Table S2). We first confirmed that the gene-methylation score properly 
recapitulates the influence of key parameters in DMC analysis such as significance and 
effect size of the methylation change, number of DMCs per gene, and distance from TSS, 

as well as promoter and enhancer localization (Figure 1C). We also confirmed that while 
preserving key information from standard methylation metrics, the gene-methylation 

score presented a better association with DEGs than significance or methylation change 
alone. Thus, the gene-methylation score appears to be a better predictor of the methylation 
influence on gene expression (Figure 1C). We then used our gene-methylation score to 

perform pathway enrichment analysis and data integration, especially considering 
integration with gene expression data. 

 
Figure 1. LGA is associated with DNA hypermethylation targeting key stem cell signaling 
pathways. (A) Overview of study design (B) Volcano plot of DNA methylation score differences for 
LGA compared to CTRL in cohort 1, cohort 2, and cohort 1 + 2. Differentially methylated loci with 
p-value < 0.001 and |methylation difference| > 25% are shown in red. (C) Summary of calculation 
for the gene-methylation score. (D) Validation of the gene-methylation score. Gene-methylation 
score distribution. Bar plot of the association between gene-methylation score and genomic or 
methylation-related features. Bar plots representing the significance of the difference in gene-

methylation score of DEGs compared to non-DEGs considering different metrics. eQTR, region with 
expression quantitative traits loci; DMC, differentially methylated CpGs. (E) Network 
representation of GO Biological Process enriched in hypermethylated genes. Significantly enriched 
GO terms were identified using GSEA based on the gene-methylation score. Edges represent 
interactions (gene overlap) between pathways. 
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Using the gene ontology (GO) reference database, we performed methylation gene-
set enrichment analysis (GSEA) based on the gene-methylation score. We found that 
change in DNA methylation in LGA HSPC samples targeted genes involved in signaling 

regulating fetal development as well as in key stem cell pathways such as Wnt signaling, 
cell fate specification, and cell fate commitment pathways (adjusted p-value < 0.01, Figure 

1D) confirming previous findings [11]. 

2.2. Single-Cell Transcriptomic Analysis Confirms Alteration of Hyper-Methylated Genes in 
Pathways Regulating Stem Cell Differentiation among LGA HSCs 

To identify genes altered in LGA and to obtain further biological insight into the 

functional consequences of the DNA methylation modifications observed in LGA, we 
performed a single-cell transcriptomic analysis comparing CTRL and LGA HSPCs. 

To enable lineage-specific transcriptomic analysis, we created a hematopoietic 

reference map (i.e., hematomap) by integrating data generated from cord blood-derived 
CD34+ HSPC cells (n = 18520) from 7 control neonates (Figure 2A). Based on cluster-

specific gene expression, we identified 18 distinct clusters representative of major lineages 
(Long-Term HSC, HSC, Multi-Potent progenitor, Lymphoid, Myeloid, and Erythroid) of 
the hematopoietic compartment (Figure 2B, Supplemental Figure S2). Each cluster was 

annotated using cell-type-specific markers. Markers were then ranked based on their 
expression fold change and the specificity of the cluster. Top cluster-specific markers were 

compared with published cell-type-specific genes [13–16] (Supplemental Table S3). 
Candidate cell subpopulations were distributed as follows: 1% LT-HSC (ID1); 24% HSC 

(AVP); 45% MPP/LMPP (CDK6); Lymphoid (CD99, LTB); 1% B cell (IGHM); 1% T cell 
(CD7); 14% Erythro-Mas (GATA1); <1%Mk/Er (PLEK, HBD); 8% Myeloid (MPO); <1% DC 
(CST3, CD83). 

 

Figure 2. Lineage-specific transcriptomic analysis. (A) Hematomap, UMAP representation of 
distinct HSPC lineages. (B) Dot plot representing key markers used to annotate cell populations. 

LT-HSC, long-term hematopoietic stem cell; HSC, hematopoietic stem cell; MPP, multipotent 
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progenitor; LMPP, lymphoid-primed multipotent progenitors; Erythro-Mas, erythroid and mast 
precursor; Mk/Er, megakaryocyte and erythrocyte; DC, dendritic cell. (C) MA plots representing 
gene expression analysis in HSCs comparing LGA vs. CTRL. Differentially expressed genes with 
adjusted p-value < 0.05 and |log2FC| > 0.5 are shown in red. (D) Network representation of 
significantly enriched pathways identified through GO GSEA analysis comparing LGA vs. CTRL. 
Non-redundant pathway annotations have been used. Edges represent interactions between 
pathways. 

To identify differentially expressed genes (DEG) between CTRL and LGA samples, 
we implemented the Hash Tag Oligonucleotide (HTO) multiplexing strategy [17] 

allowing simultaneous processing of CTRL and LGA samples. Multiplexing is a means to 
limit the influence of technique-driven batch effects at every stage of the analysis to 

improve the biological relevance of the finding. We generated multiplexed single-cell 
transcriptomic data from 6 LGA (n = 6861 cells) and 7 CTRL (n = 5823 cells) samples. In 

LGA samples, we observed a shift toward downregulated genes (Supplemental Figure S3) 
especially in the HSC subpopulation (n = 285 downregulated genes over 373 DEGs, 
adjusted p-value < 0.05 and log2FC < (−0.5), Figure 2C; Supplemental Table S4). Notably, 

the well-known EGR1, JUNB, and KLF2 genes were among the top affected genes. Using 

GO enrichment analysis, we found that downregulated genes were enriched in growth-
related pathways (e.g., regulation of growth) as well as in stress-related biological 

processes (e.g., response to temperature stimulus, cellular response to chemical stress; 
Figure 2D, adjusted p-value < 0.05). 

To assess if these HSC-specific transcriptomic changes may be associated with 
epigenetic changes, we integrated bulk DNA methylation with single-cell gene expression 
data using the gene-methylation score. We found that DEGs, and particularly the down-

regulated genes, mostly showed high gene-methylation scores (Figure 3A,B). We then 
assessed the association between changes in DNA methylation and gene expression at the 

pathway level. We looked for enrichment for differentially methylated genes considering 
pathways that were identified based on DEGs. We found a significant overlap between 
GO terms enriched in LGA HSC downregulated genes and GO terms enriched in 
hypermethylated genes (10 out of 46; p-value < 0.05, hypergeometric test). The most co-
enriched term is “regulation of growth” including notably SOCS3, SIRT1 and SESN2 

genes that are both downregulated and within the top 10% of hypermethylated genes 
(Figure 3C). These results suggest that the epigenetic change in LGA could lead to an HSC-
specific alteration of the regulation of growth signaling. 
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Figure 3. Association between changes in DNA methylation and in gene expression. (A) Dot plot 
representing the correlation between DNA methylation and gene expression changes. Differentially 
expressed genes with adjusted p-value < 0.05 and |log2FC| > 0.5 are shown in red. (B) Boxplots 
representing gene-methylation score distribution associated with non-DEG, up-regulated, and 
down-regulated genes (Wilcoxon test). (C) Network representation of significantly enriched 
pathways identified through GO GSEA analysis based on DEG identified comparing LGA vs. CTRL. 
Nodes are color-coded based on enrichment for differentially methylated genes using the gene-
methylation score. Edges represent interactions between pathways. 

2.3. DNA Methylation Changes Occurs in HSCs and DEGs Associated Open Chromatin 

Regions 

To assess if the HSC-specific transcriptional alteration could be due to HSC-specific 
epigenetic change, we profiled chromatin accessibility at the single-cell level (i.e., single-
cell ATAC-seq). We generated open chromatin data across 8733 cells in HSPCs from 6 

CTRL and 5 LGA neonates. We first annotated subpopulations using the label transfer 
approach between ATAC-seq data and the lineage labels from the Hematomap (Figure 

4A, Supplemental Figure S4A). To validate the relevance of our lineage annotation, we 
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performed TF motif enrichment and observed that lineage-specific peaks were effectively 
associated with well-known lineage-specific TF (Supplemental Figure S4B). 

We then integrated our bulk DNA methylation data with our single-cell ATAC-seq 

data to assess DMCs distribution within open chromatin regions (OCRs). Overall, 31% of 
the 211,479 peaks contain CpGs queried by our genome-wide methylation assay. We first 

observed a strong enrichment for DMCs in OCRs with 74% of them located in OCRs 
compare to only 34% of overall queried CpGs (p-value < 0.001, hypergeometric test). Such 

enrichment further supports the putative regulatory influence of our DMCs. By 

performing lineage-specific analysis, we observed DMCs enrichment in HSC-specific 
open chromatin region with a total of 11% of HSC-specific peaks containing DMCs 
(adjusted p-value < 0.001, Figure 4B), while no enrichment was observed for the other 

lineages. This result corroborates the HSC-specific transcriptional impact of the DNA 
methylation changes observed in LGA. Furthermore, we observed that DEGs in LGA HSC 

and especially down-regulated genes were enriched for OCRs containing DMCs (Figure 
4C). 

Not limiting our analysis to the regulatory role of DMCs within open chromatin 
regions, we then assessed the change in chromatin accessibility in LGA HSCs. We 
identified 278 open chromatin regions that significantly differ between LGA and CTRL 
HSCs, with 215 showing decreased and 63 showing increased accessibility (adjusted p-

value < 0.001 and |log2FC| > 0.25, Supplemental Figure S4C). By performing TF Motif 

analysis on regions with decreased accessibility, we identified that the motif of the 
transcriptionally downregulated TFs EGR1 and KLF2 are highly enriched (p-value < 

1.10−40) and among the top 6 enriched motifs (Figure 4D, Supplemental Figure S4D). 

We then assessed the interaction between DNA methylation, gene expression, and 
chromatin accessibility. Regions with decreased accessibility were also strongly enriched 

in peaks including DMCs and peaks associated with DEGs (Figure 4E), with 3-fold and a 
2.5-fold enrichment, respectively. Furthermore, these regions were strongly enriched for 
peaks containing both DMCs and associated with DEGs (23-fold enrichment) illustrating 

that early epigenetic programming is actually not limited to changes in DNA methylation 
but also involves chromatin rearrangement targeting altered genes. 
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Figure 4. Chromatin accessibility analysis. (A) UMAP representing HSPCs lineage based on 
chromatin accessibility. Annotations are based on the Hematomap using the transfer label 
approach. (B) Dot plot representing enrichment for DMC within lineage-specific peaks. (C) Bar plots 
representing enrichment for peaks containing CpG or peaks containing DMC associated to DEGs, 
up-regulated and down-regulated genes (* p-value < 0.05; ** p-value < 0.01, *** p-value < 0.001, 
hypergeometric test). (D) Dot plot representing enrichment for transcription factor motif within 
Down peaks identified comparing chromatin accessibility between LGA and CTRL. Dots are color-
coded based on percentage of peaks with motif and y-axis represents the significance of the 
enrichment. (E) Bar plots representing enrichment analysis considering accessible, down, and up 
peaks. Enrichment is performed using peaks in expressed genes (expressed), peaks with CpGs 
(CpGs), peaks in DEG (DEGs), peaks with DMC (DMCs), and peaks in DEG with DMC 
(DMCs_DEGs) as reference gene sets (** p-value < 0.01, *** p-value < 0.001, hypergeometric test). 

2.4. EGR1, KLF2, and KLF4 Are Key Upstream Regulators Influenced by Early Epigenetic 

Programming in LGA 

To further characterize the molecular mechanisms affected in LGA HSCs and 
identified master regulators, we leveraged the single-cell resolution of our approaches to 
perform a co-regulatory network analysis. This approach allowed us to model the 

influence of upstream transcription factors (TF) on expression changes of downstream 
target genes. We performed co-expression analysis to identify genes co-regulated by the 

same TF, i.e., regulons, and filter each regulon based on the presence of TF motif within a 
cis-regulatory region (SCENIC). We identified a total of 250 regulons but only considered 
for further analyses the 106 regulons identified based on high confidence cis-regulatory 

motif. These regulons only rely on associations for which the presence of the TF motif was 
experimentally validated. We then scored the regulons activity in each cell using gene 

expression profiles of the entire regulons (AUCell). We observed that lineage-specific 
regulons are associated with concordant lineage determining hematopoietic TFs such as 
GATA2, GATA3, MEIS1, TAL1, TCF3, EGR1, CEBPB, HOXB4, SPI1, and STAT1/3 further 

supporting our subpopulation annotation and the SCENIC approach (Supplemental 
Figure S5A, Supplemental Table S5) [18]. 
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To identify TF associated with the changes in gene expression observed in LGA HSC, 
we compared the regulon activity between CTRL and LGA. We found seven regulons 
with a significant decrease in activity in the LGA HSC population (adjusted p-value < 0.001 

and |activity score fold change| > 10%, Supplemental Table S6). No regulons were 
upregulated. These regulons were associated with ARID5A, EGR1, KLF2, KLF4, KLF10, 

FOSB, and JUN (Figure 5A). Among them, ARID5A, EGR1, KLF2, FOSB, and JUN were 
part of the 10 top active regulons in HSCs (Supplemental Table S7). Based on functional 
enrichment analysis using as reference GO:BP gene sets, and HSC signatures of 

quiescence or proliferative state [19], we showed that these regulons were enriched in 
genes regulating stress response, proliferation, and HSC differentiation (Figure 5B). 

To further support the association between change in DNA methylation and change 
in gene expression previously identified at the gene level, we performed GSEA analysis 
to identify regulon enriched for both differentially methylated and differentially 

expressed genes. We found 9 regulons enriched in both hypermethylated and 
downregulated genes (adjusted p-value < 0.01 and NES < −1.6), including the differentially 

active regulons ARID5A, EGR1, FOSB, JUN, KLF2, and KLF4 (Figure 5C). We also found 
9 regulons enriched in hypermethylated and upregulated genes (adjusted p-value < 0.01 

and NES > 1.6) with key HSPC-specific regulons such as SPI1 promoting myeloid 

differentiation [20] and HOX family (HOXA9, HOXA10, HOXB4) promoting HSPC 
expansion (Figure 5C) [21–23]. 

To confirm the putative influence of methylation change on TF activity, we 
performed TF motif analysis considering the proximal regions surrounding each DMCs 
(±20 bp). We found significant enrichment for 23 TF motifs (adjusted p-value < 0.05, Figure 

5D). Among them, we found EGR1 and several members of the Kruppel-like factors (KLF) 
family: KLF14, KLF5, KLF1, and KLF6. Furthermore, by taking advantage of our single-

cell ATAC-seq data, we looked at the enrichment of the TF motif in open chromatin 
regions of HSC containing DMCs. We found a strong enrichment in EGR1, KLF2, and 
KLF4 motifs indicating that DNA methylation change occurred in active regions of the 

EGR1/KLF2/KLF4 TF network (Figure 5E). 
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Figure 5. Epigenetic programming of HSC-specific regulons altered in LGA neonates. Regulons 
and TF target information were obtained through the SCENIC workflow. (A) Boxplots representing 

regulon activity score in CTRL and LGA HSC lineage. Barplot representing the change in regulon 
activity and significance comparing LGA vs. CTRL. Only significantly affected regulons are 
represented (adjusted p-value < 0.001 and |activity score fold change| > 10%). (B) Heatmap 
representing association between altered regulons and selected gene sets annotation. (C) Volcano 
plot representing enrichment in the change in expression and DNA methylation in regulons. 
Regulons enriched considering both expression and methylation (adjusted p-value < 0.01 and NES 
> 1.6) are in red. (D) Dot plot representing enrichment for TF binding motifs using HOMER 
considering a ±20 bp region around DMCs. Dots are color-coded based on the significance of the 
enrichment and y-axis represent the number of regions with binding motif among DMCs. (E) Dot 
plot representing enrichment for TF binding motifs using HOMER considering peaks with DMCs. 
Dots are color-coded based on the fold-enrichment and y-axis represents the significance of the 
enrichment. 
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2.5. Multimodal Co-Regulatory Network Recapitulating TF-Gene Interactions Influenced by 
Early Epigenetic Programming in LGA 

Based on the integration of the DNA methylation, single-cell ATAC-seq, and single-
cell RNA-seq data, we built a network recapitulating interaction between main TFs and 

downstream target genes within the principal regulons altered in LGA neonates: EGR1, 
KLF2, and KLF4 (Figure 6). EGR1, KLF2, and KLF4 regulons rely on highly interconnected 
(co-regulated) genes (Figure 6A). For each target gene, we confirmed the presence of a 

unique or shared upstream TF binding motif within the open chromatin regions. We 
observed a high concordance between the regulons and open chromatin motif analysis: 

96%, 91%, and 95% of genes included in EGR1, KLF2, and KLF4 regulons, respectively, 
were associated with at least one peak containing the corresponding TF motif supporting 
the association between genes and TFs. We then looked for evidence of epigenetic 

modifications that may alter TF-target interactions. We annotated genes with associated 
open chromatin regions containing at least one DMC (middle area) or identified as 
differentially accessible between CTRL and LGA (inside area) (Figure 6B). Overall, 23% (n 

= 27) of genes targeted by these TFs networks have epigenetic alteration (DMCs or 
decrease accessibility) in open chromatin regions while 22% (n = 26 genes) appear 

downregulated in LGA. Finally, we highlight KLF2 as possible master regulators 
influenced by early programming. Indeed, we identified KLF2 as a hypermethylated and 

downregulated gene that interacts directly with EGR1 and KLF4 suggesting the 
downstream influence of KLF2 on these TFs. Conversely, KLF2 was not identified as part 

of EGR1 and KLF4 regulons suggesting that KLF2 is not a target of these TFs. This network 
also further validated JUNB and SOCS3 being highly epigenetically altered in cis-
regulatory regions (Figure 6C), as well as ID1, CDKN1A, IER2, IER3, and IER5 as key 

downstream altered targets of KLF2, EGR1, and/or KLF4, again highlighting how early 
programming alters signaling involved in the regulation of cell proliferation and 

differentiation. 
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Figure 6. Network recapitulating interaction between the epigenomic and transcriptomic 
alterations in LGA. (A) Network representing interactions between target genes and transcription 
factors considering our top affected regulons ARID5A, EGR1, KLF2, KLF4, FOSB, and JUN. Each 
dot represents a gene within the network, the triangle represents a transcription factor, the arrow 
represents the interaction between the transcription factor and target genes, shapes are color-coded 
to reflect the change in gene-methylation score, and DEGs are labeled in red. Size of the shape 
represents the number of interactions. Only genes with two or more interactions are represented. 
(B) Tracks representing DNA methylation and chromatin accessibility for selected representative 
regions. Histogram representing change in DNA methylation at CpG level comparing LGA vs 
CTRL. Violin plot representing gene expression for selected genes (C) Network-based on the 
integration of DNA methylation, gene expression, and chromatin accessibility representing 
transcription factors and downstream target interactions within EGR1, KLF2, and KLF4 regulons. 
Only genes associated with peaks with TF motifs of interest are annotated. Donuts represent 
different levels of interactions. ***: significant change of peak accessibility (logistic regression) or 
gene expression (Wilcoxon test) in LGA compared to Control HSCs, adjusted p-value < 0.001. 

2.6. In Vitro Analysis Confirms the Alteration of HSPCs Differentiation Capacities in LGA 

Our integrative analyses highlighted epigenetic and transcriptomic alterations 

targeting signaling pathways involved in the regulation of HSC differentiation and 
proliferation. Thus, we decided to challenge HSPC differentiation and proliferation 

potential in vitro using colony-forming unit (CFU) assays. After 14 days of expansion, 
colonies from 4 CTRL and 4 LGA samples were classified into three categories: those 
derived from common myeloid progenitors (CFU_GEMM), erythroid progenitors (BFU-

E), and granulocyte-macrophage progenitors (CFU_GM) based on the morphology of 
each colony. We observed a significant decrease in the number of common myeloid 
progenitor colonies in LGA samples (p-value < 0.05; Figure 7A) as well as striking 

differences in shape and size of more differentiated colonies (Figure 7B). CFU_GEMM 
colonies are the product of a non-committed hematopoietic progenitor able to 

differentiate in both erythroid and myeloid lineage. In our samples, only HSC and MPP 
have these features, suggesting that the decreased CFU GEMM proportion in LGA reflects 

either fewer HSC/MPP in starting cell subpopulation composition or a decreased 
proliferation and differentiation capacity of these cells. 

To evaluate these two possibilities, we monitored cell population distribution across 

conditions at molecular resolution using our single-cell expression dataset. We observed 
a decrease in HSC cells (p-value = 0.015) and a trend toward increased MPP cells (p-value 

= 0.13, Figure 7C) in LGA compared to CTRL. Another way to look at population shift is 
to use pseudotime, i.e., a measure that reflects how far an individual cell is in a 
differentiation process. Indeed, cord-blood-derived CD34+ HSPCs represent a 

heterogeneous population of cells ranging from progenitors to progressively restricted 
cells of the erythroid, myeloid, or lymphoid lineages as confirmed by our single-cell 

transcriptomic analysis. To follow cell distribution through these levels of differentiation 
and assess the influence of the LGA environment we used the pseudotime tool from 
Monocle [24] Collecting the pseudotimes across our different cell populations, we 

observed a positive correlation between pseudotime and lineage differentiation as 
expected (r = 0.99, Pearson correlation, Figure 7D, Supplemental Figure S6A). We then 

compared the distribution of the pseudotime between LGA and CTRL using the least 
differentiated cells as roots, i.e., the long-term HSCs. At the population level, we observed 
an increase in pseudotime in LGA (p-value < 0.001, Figure 7E). Indeed, we observed a 

decrease in the number of cells presenting pseudotime associated with the HSC state in 
LGA samples (p-value < 0.05) and a shift toward cells presenting elevated pseudotime 

suggesting that LGA HSCs exit quiescence and differentiate more quickly compared to 
CTRL HSCs (Figure 7E). Altogether, our analysis supports the association between LGA 
exposure and cell growth signaling targeted by DNA methylation and gene expression 

changes with alteration of differentiation and proliferation capacities. 
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Figure 7. LGA is associated with decreased expansion capacity and an HSC shift toward more 
differentiated cells. (A) Bar plot representing colonies distribution after CFU assays. (B) 

Representative capture of colonies’ morphological differences found in CTRL and LGA. (C) 
Boxplots representing the cell distribution across hematopoietic main lineages in CTRL and LGA. 
(D) UMAPs representing pseudotimes across lineages. (E) Box plots representing the cumulative 
percentage of cells per pseudotime in CTRL and LGA. Boxplots in the vignette represent overall 
pseudotime distribution in CTRL and LGA. Density plots correspond to cell populations 
distribution across pseudotimes. (F) Model recapitulating the influence of LGA on the 
hematopoietic compartment. (LT-HSC, long-term hematopoietic stem cell; HSC, hematopoietic 
stem cell; MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent progenitors; Erythro-
Mas, erythroid and mast precursor; Mk/Er, megakaryocyte and erythrocyte; DC, dendritic cell; 
CFU-GEMM, common myeloid progenitors; BFU-E, erythroid progenitors; CFU-GM, granulocyte-
macrophage progenitors. 
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3. Discussion 

Here, we interrogated three major layers of the regulatory landscape in cord-blood-

derived CD34+ HPSCs, DNA methylation, chromatin conformation, and gene expression. 
We characterized, in-depth and at single-cell resolution, the functional consequences 

associated with early DNA methylation changes observed in LGA neonates. Through, the 
integration of multiple datasets and the development of novel analytical approaches, we 
addressed a very challenging aspect of functional (epi)genomics, the interpretation of 

DNA methylation changes. Focusing on HSPCs, we believe that we contributed to a better 
understanding of how early environment shapes the hematopoietic compartment 

development and long-term function. 
We demonstrated in LGA neonates a correlated increase in DNA methylation and 

change in chromatin accessibility associated with decreased expression of downstream 

target genes under the influence of key HSC transcription factors EGR1, KLF2, and KLF4. 
EGR1, KLF2, and KLF4 are zinc-finger transcription factors involved in HSC quiescence 

signaling. EGR1 has a known role in regulating cell growth, development, and stress 
response in many tissues. In HSPC, EGR1 plays a role in the homeostasis of HSCs 
regulating proliferation [25]. EGR1 promotes quiescence and decreases through 

differentiation. Interestingly, EGR1 has also been shown to interact with epigenetic 
regulators forming a complex with DNMT3 and HDAC1 [26] suggesting a possible role 

in the epigenetic remodeling observed in LGA HSC. The KLF family is implicated in key 
stem cell functions. KLF4 is the most well-known factor in this family due to its role in 

reprogramming somatic cells into induced pluripotent stem cells [27]. KLF4 has been 
identified as a target for PU.1 transcription factor required for lineage commitment in 
HSPCs [28]. KLF2 and KLF4 promote self-renewal in embryonic stem cells [29] but no 

study has looked specifically at KLF2 and KLF2/KLF4 interactions in HSPCs. Our data 
suggest direct and indirect (shared downstream target) interactions between these three 

transcription factors in HSPCs. EGR1, KLF2, and KLF4 represent targets to be further 
explored in order to challenge causality. Still, our findings lead to a better understanding 
of how early exposure can affect long-term hematopoietic maintenance in humans via 

epigenetic programming of the EGR1, KLF2, and KLF4 signaling. Furthermore, these 
coordinated epigenetic and transcriptomic changes target genes regulating growth 
signaling, such as SOCS3, SIRT1, and SESN2 [30–32]. Alteration of growth signaling 

highlights the tight correlation between in utero environment and the epigenetic 
programming. Indeed, excessive fetal growth observed in LGA neonates results in part 

from gestational hyperglycemia, dyslipidemia, or over secretion of placental insulin-like 
growth factors [33–35]. Altogether, these results further illustrate how DNA methylation 

and chromatin accessibility are key co-epigenetics actors regulating TF activity. Such 
interplay was already observed in the context of lineage commitment [36,37], but not yet 
in the context of developmental programming of HSCs. This highlights the interest in 

considering both methylation and chromatin rearrangement in fetal programming studies 
to decipher putative epigenetic imprinting and functional consequences. 

Interestingly, EGR1, KLF2, and KLF4 are not only involved in the regulation of 
proliferation and differentiation per se but are key factors of the immediate, early response 
involved in stimulation-related cell activation. EGR1 and KLF2 expression increase in 

response to extrinsic stimulation. Elevated EGR1 and KLF2 expression promote self-

renewal and quiescence in HSC [25,29]. Our transcriptomic data suggests that such 

activation may be occurring in our samples with the activation of stress-related signaling. 
The primary scope of our study was not to characterize the environmental exposure that 
would trigger such responses. However, one can speculate that the activation could result 

from stress due to cold exposure or handling time inherent to sample preparation. Still, 
the decreased activity observed in LGA suggests that LGA HSCs’ capacities to respond to 

environmental challenges are diminished. This hypothesis fits with the concept of early 
programming in which disease susceptibility relies not only on early impairment of organ 
development but also on a decreased adaptability to further environmental challenges to 
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trigger disease [38]. Indeed, fine-tuning HSC quiescence mechanisms is of crucial 
relevance for optimal hematopoiesis. Not responsive dormant HSC would lead to 
hematopoietic failure due to a lack of differentiated blood cells. Although highly 

responsive HSC would lead to exhaustion of the population and a lack of long-term 
maintenance of the hematopoietic system [39]. 

To validate findings from our integrative approach, we challenged HSPCs in vitro 
and found a significant decrease in the number of CFU-GEMM colonies, colonies 
containing both erythroid and myeloid cells. These colonies are likely to originate from 

HSC or MPP cells, as only these cells have this multi-potential. These alterations could 
result from the decreased differentiation and proliferation capacities of these CD34+ cells 

or a decrease in their initial proportion in LGA cord blood. Our data suggest that both are 
altered in LGA. Indeed, the cell population analysis at the transcriptomic level revealed a 
decrease in HSCs in LGA neonates but a tendency to an increase in MPPs. We also 

observed epigenomic and transcriptomic alterations in signaling pathways and 
transcription factors regulating differentiation and proliferations of HSCs. Yet, this loss of 

stemness capacities in HSC is likely to drive the decrease in HSC subpopulations observed 
in our data and the decreased colony-forming capacity. 

These findings corroborate previous studies on the developmental programming of 

the hematopoietic system [9,10]. A reduction in self-renewal of HSPCs and increased 
differentiation in both lymphoid and myeloid lineages have been observed in a mouse 

model of maternal obesity [8]. These effects may drive long-term consequences in human 
health as illustrated by the study performed by Kotowski et al. in which the integrity of 
the hematopoietic system in neonates was associated with susceptibility to onset of 

hematopoietic pathologies [40]. 
Hematopoietic stem cell differentiation and self-renew rely on a synergic interplay 

between genetically encoded signaling, cell-intrinsic, and cell-extrinsic factors as well as 
epigenetic modifiers [41]. This interplay appears altered in LGA neonates. We here 
provide a comprehensive model recapitulating the functional influence of the epigenetic 

early programming on HSPCs fitness to later environmental exposure (Figure 7F). We also 
linked LGA-associated epigenetic modifications to gene expression and functional 

alterations through a novel integrative approach. In this regard, we identified targets to 
be further explored. We also brought a better understanding of how early exposure can 
affect long-term tissue maintenance via epigenetic programming of EGR1, KLF2, and 

KLF4 associated regulation of growth signaling. 

4. Methods 

See the Supplemental Methods for additional information. 

4.1. Clinical Sample Collection 

Cord blood samples were obtained from CTRL and LGA neonates. LGA were 

defined by birth weight and ponderal index values greater than the 90th percentile for 
gestational age and sex. Control infants had normal parameters (between 10th and 90th 

percentiles) for both birth weight and ponderal index. Maternal and infant characteristics 
are shown in Supplemental Table S8. 

4.2. Isolation of CD34+ HSPCs 

Mononuclear cells were separated using PrepaCyte-WBC following which CD34+ 

cells were obtained by positive immunomagnetic bead selection, using the AutoMACS 
Separator (Miltenyi Biotech, Cologne, Germany). Cells were cryopreserved in 10% 

dimethyl sulfoxide using controlled rate freezing upon analysis. 
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4.3. Genome-Wide DNA Methylation Assay 

DNA methylation levels for >1.7 M CpGs were obtained using the HELP-tagging 

assay as previously described [42]. 

4.4. Single-Cell RNA Sequencing Libraries Preparation 

After cell count and viability check, the cell suspension was loaded into the 

Chromium controller (10x Genomics, Pleasanton, California, US) and library was 
generated using the chromium single-cell v3 chemistry following manufacturer 
recommendations. Gene expression library was sequenced using 100 bp paired-end reads 

on the Illumina NovaSeq 6000 system (Illumina, San Diego, California, US). 

4.5. Single-Cell ATAC Sequen1cing Libraries Preparation 

After cell count and viability check, nuclei were isolated from cell suspension and 
incubated with transposase. Transposed nuclei were then loaded into the Chromium 10x 

Genomics controller and library was generated using the chromium single-cell ATAC v1.1 
chemistry following manufacturer recommendations. Gene expression library was 

sequenced using 150 bp paired-end reads on the Illumina NovaSeq 6000 system. 

4.6. HTO Protocol 

After cell counting and viability check and prior to cell suspension loading on the 
Chromium controller, cell hashtag (HTO) staining (Biolegend, San Diego, California, US) 

was used following the cell-hashing protocol [17]. 

4.7. Colony Forming Unit Assay 

To assess clonogenic progenitor frequencies, 3 × 103 CD34+ HSPC cells were plated 

in methylcellulose containing SCF, GM-CSF, IL-3, and EPO (H4434; STEMCELL 
Technologies, Vancouver, Canada). Colonies were scored 14 days later. 

4.8. Data Processing and Statistical Analysis 

For DNA methylation analysis, low-quality CpGs were filtered out based on 

detection rate and confidence score. 754,931 out of 1,709,224 CpGs were conserved for 
further analysis. Linear regression and statistical modeling using the LIMMA R package 
[43] were used to identify differentially methylated CpGs (DMC) including maternal age, 

sex, ethnicity, batch, and library complexity in the linear model. We assessed enrichment 
for biological pathways performing GSEA using the ClusterProfiler package [44]. We 

performed transcription factor (TF) motif enrichment analysis using the HOMER tool [45] 
considering a 20 bp region around the DMCs. 

For single-cell RNAseq (scRNA-seq) analysis, data were preprocessed using the 

CellRanger count pipeline (10x Genomics). Data filtering, normalization, and integration 
as well as cluster identifications were performed using Seurat (v4) pipeline. Pseudo-bulk 

differential expression analysis between LGA and CTRL cells within each hematopoietic 
lineage was performed using DESeq2 R package including batches and sex of samples in 
the negative binomial model[46]. Over representation test was performed on differentially 

expressed genes (DEGs) using enrichGO and enrichKEGG of the ClusterProfiler Package. 
The SCENIC workflow [47] was used to identify co-regulated genes module associated to 

a TF (regulons) and to generate cell-specific activity scores for each regulon. 
Differentiation trajectory analysis and pseudotime attribution were conducted with 
Monocle [24]. 

For single-cell ATAC-seq, data were preprocessed using the CellRanger ATAC 
pipeline (10x Genomics). Data filtering, normalization, and integration as well as 

clustering were performed using the Signac pipeline. Cell type identification was based 
on scRNA-seq annotation using a label transfer approach. Peaks calling at lineage level 
was performed using the MACS2 tool. Peaks specific to each lineage or differentially 
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accessible between LGA and Control were identified using the FindMarkers function with 
Logistic Regression (LR) models including cellular sequencing depth as a latent variable. 
TF motif enrichment on lineage or group-specific peaks was performed using the 

FindMotifs function. All peaks enrichment analysis was performed using hypergeometric 
tests. For final Gene Regulatory Network (GRN) construction, TF target interactions 

inferred with SCENIC were filtered out based on the presence of a corresponding TF motif 
in the peak associated with the target. Supplemental Table S9 contains information on the 
number of cells per sample. 

4.9. Gene-Methylation Score 

To compute the gene-methylation score, 2 steps were needed: (1) to generate a CpG 
score that reflects the association between CpG and gene, and (2) to concatenate CpG-
scores at the gene level. 

(1) CpG-score 

CpGScore = (−log10(pcpg) × meth.change) × LinkWeight × RegWeight 
Where pcpg is the nominal p-value of the differential methylation analysis, and 

meth.change is the difference between the percentage of methylation in LGA and the 
percentage of methylation in CTRL. LinkWeight represents the confidence in CpG-gene 

association and RegWeight represents the estimated regulatory influence of the 
considered CpG based on CD34+ specific genomic annotation defined using CD34+ 

specific histone marks as previously described [11] and EnsRegScore refers to regulatory 
regions defined based on the Ensembl Regulatory build hg19 genome annotation [48]. 

(2) To concatenate CpG-Scores at gene level: gene-methylation score 

To summarize the CpG methylation change at the gene level, we aggregated the 
CpG-Scores into a methylation gene score by taking care to (i) alleviate the arbitrary 

number of CpGs per gene and (ii) interpret differently CpG influences located on the 
promoter of them in others genomic region. 

The gene-methylation score is defined as: 
Gene-methylation score = ( ∑ 𝐶𝑝𝐺 𝑆𝑐𝑜𝑟𝑒 × 𝑊𝑒𝑖𝑔ℎ𝑡 𝑛_𝑐𝑝𝑔 )promoter + 

(∑ |𝐶𝑝𝐺 𝑆𝑐𝑜𝑟𝑒|  × 𝑊𝑒𝑖𝑔ℎ𝑡 𝑛_𝑐𝑝𝑔)other_regions 

Where the WeightnCpG was optimized to alleviate the influence of the number of CpGs 

linked to a gene and defined as: 

WeightnCpG = √
1

∑ 1
|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+1|

3,8  
 

The code to perform the analyses in this manuscript is available at 
https://github.com/umr1283/LGA_HSPC_PAPER.git (last accession date : 29th June 2022). 
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Author Contributions: A.P., A.C., Y.M.Z., E.D., L.B.-F. and F.D. were responsible for conducting 
research and analyzing data. M.D. and M.C. provided feedback on the data analysis. A.P., A.C., 
F.D., A.B. and P.F. contributed to writing the manuscript. F.D., F.H. and J.G. were responsible for 
designing the study. All authors have read and agreed to the published version of the manuscript. 

Funding: Support for this project was provided by the Roadmap Epigenomics Program, R01 
HD063791 (Einstein/Greally). Support was also provided by Einstein’s Center for Epigenomics, 
including the Epigenomics Shared Facility and Computational Epigenomics Group. 

Institutional Review Board Statement: :  This study was approved by the Institutional Review 
Board of the Montefiore Medical Center and the Committee on Clinical Investigation at the Albert 

103

https://github.com/umr1283/LGA_HSPC_PAPER.git


Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 18 of 20 
 

 

Einstein College of Medicine and is in accordance with Health Insurance Portability and 
Accountability Act regulations. 

Informed Consent Statement: This study was approved by the Institutional Review Board of the 
Montefiore Medical Center and the Committee on Clinical Investigation at the Albert Einstein 
College of Medicine and is in accordance with Health Insurance Portability and Accountability Act 
regulations. Written informed consent was obtained from all subjects before participation. 

Data Availability Statement: The DNA methylation and gene expression data will be made 
available upon request to A.P., P.F. or F.D. 

Acknowledgments: The authors thank the UMR 8199 LIGAN-PM Genomics platform (Lille, France) 
which belongs to the ‘Federation de Recherche’ 3508 Labex EGID (European Genomics Institute for 
Diabetes; ANR-10-LABX-46) and was supported by the ANR Equipex 2010 session (ANR-10-EQPX-
07-01; ‘LIGAN-PM’). The LIGAN-PM Genomics platform (Lille, France) is also supported by the 
FEDER and the Region Nord-Pas-de-Calais-Picardie. This project is cofunded in the frame of CPER 
CTRL program by the European Union—European Regional Development Fund (ERDF), Hauts de 
France Region (contract n°17003781), Métropole Européenne de Lille (contract n°2016_ESR_05), and 
French State (contract n°2017-R3-CTRL-Phase 1). The present work was also supported by the 

National Center for Precision Diabetic Medicine—PreciDIAB, which is jointly supported by the 
French National Agency for Research (ANR-18-IBHU-0001), by the European Union (FEDER), by 
the Hauts-de-France Regional Council and by the European Metropolis of Lille (MEL) and by the 
European Research Council (ERC Reg-Seq—715575). We thank “France Génomique” consortium 
(ANR-10-INBS-009). 

Conflicts of Interest: The authors declare no competing financial interests in relation to the work 
described. 

References 

1. Doulatov, S.; Notta, F.; Laurenti, E.; Dick, J.E. Hematopoiesis: A human perspective. Cell Stem Cell 2012, 10, 120–136. 
https://doi.org/10.1016/j.stem.2012.01.006. 

2. Eaves, C.J. Hematopoietic stem cells: Concepts, definitions, and the new reality. Blood 2015, 125, 2605–2613. 
https://doi.org/10.1182/blood-2014-12-570200. 

3. Balistreri, C.R.; Garagnani, P.; Madonna, R.; Vaiserman, A.; Melino, G. Developmental programming of adult haematopoiesis 
system. Ageing Res. Rev. 2019, 54, 100918. https://doi.org/10.1016/j.arr.2019.100918. 

4. Pardali, E.; Dimmeler, S.; Zeiher, A.M.; Rieger, M.A. Clonal hematopoiesis, aging, and cardiovascular diseases. Exp. Hematol. 
2020, 83, 95–104. https://doi.org/10.1016/j.exphem.2019.12.006. 

5. Lee, C.C.; Fletcher, M.D.; Tarantal, A.F. Effect of age on the frequency, cell cycle, and lineage maturation of rhesus monkey 
(Macaca mulatta) CD34+ and hematopoietic progenitor cells. Pediatr. Res. 2005, 58, 315–322. 

https://doi.org/10.1203/01.PDR.0000169975.30339.32. 
6. Chandel, N.S.; Jasper, H.; Ho, T.T.; Passegue, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal 

ageing. Nat. Cell Biol. 2016, 18, 823–832. https://doi.org/10.1038/ncb3385. 
7. Guenechea, G.; Gan, O.I.; Dorrell, C.; Dick, J.E. Distinct classes of human stem cells that differ in proliferative and self-renewal 

potential. Nat. Immunol. 2001, 2, 75–82. https://doi.org/10.1038/83199. 
8. Kamimae-Lanning, A.N.; Krasnow, S.M.; Goloviznina, N.A.; Zhu, X.; Roth-Carter, Q.R.; Levasseur, P.R.; Jeng, S.; McWeeney, 

S.K.; Kurre, P.; Marks, D.L. Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol. Metab. 2015, 4, 25–38. 
https://doi.org/10.1016/j.molmet.2014.11.001. 

9. Al-Sweedan, S.A.; Musalam, L.; Obeidat, B. Factors predicting the hematopoietic stem cells content of the umbilical cord blood. 
Transfus. Apher. Sci. 2013, 48, 247–252. https://doi.org/10.1016/j.transci.2013.01.003. 

10. Chandra, T.; Afreen, S.; Kumar, A.; Singh, U.; Gupta, A. Does umbilical cord blood-derived CD34+ cell concentration depend 
on the weight and sex of a full-term infant? J. Pediatr. Hematol. Oncol. 2012, 34, 184–187. 
https://doi.org/10.1097/MPH.0b013e318249adb6. 

11. Delahaye, F.; Wijetunga, N.A.; Heo, H.J.; Tozour, J.N.; Zhao, Y.M.; Greally, J.M.; Einstein, F.H. Sexual dimorphism in 
epigenomic responses of stem cells to extreme fetal growth. Nat. Commun. 2014, 5, 5187. https://doi.org/10.1038/ncomms6187. 

12. Wijetunga, N.A.; Delahaye, F.; Zhao, Y.M.; Golden, A.; Mar, J.C.; Einstein, F.H.; Greally, J.M. The meta-epigenomic structure of 

purified human stem cell populations is defined at cis-regulatory sequences. Nat. Commun. 2014, 5, 5195. 
https://doi.org/10.1038/ncomms6195. 

13. Cabezas-Wallscheid, N.; Klimmeck, D.; Hansson, J.; Lipka, D.B.; Reyes, A.; Wang, Q.; Weichenhan, D.; Lier, A.; von Paleske, L.; 
Renders, S.; et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, 
transcriptome, and DNA methylome analysis. Cell Stem Cell 2014, 15, 507–522. https://doi.org/10.1016/j.stem.2014.07.005. 

104



Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 19 of 20 
 

 

14. Karamitros, D.; Stoilova, B.; Aboukhalil, Z.; Hamey, F.; Reinisch, A.; Samitsch, M.; Quek, L.; Otto, G.; Repapi, E.; Doondeea, J.; 
et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat. Immunol. 2018, 19, 85–97. 
https://doi.org/10.1038/s41590-017-0001-2. 

15. Zhang, Y.H.; Hu, Y.; Zhang, Y.; Hu, L.D.; Kong, X. Distinguishing three subtypes of hematopoietic cells based on gene 
expression profiles using a support vector machine. Biochim. Biophys. Acta. Mol. Basis. Dis. 2018, 1864, 2255–2265. 
https://doi.org/10.1016/j.bbadis.2017.12.003. 

16. Zheng, S.; Papalexi, E.; Butler, A.; Stephenson, W.; Satija, R. Molecular transitions in early progenitors during human cord blood 
hematopoiesis. Mol. Syst. Biol. 2018, 14, e8041. https://doi.org/10.15252/msb.20178041. 

17. Stoeckius, M.; Zheng, S.; Houck-Loomis, B.; Hao, S.; Yeung, B.Z.; Mauck, W.M., 3rd; Smibert, P.; Satija, R. Cell Hashing with 
barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome. Biol. 2018, 19, 224. 
https://doi.org/10.1186/s13059-018-1603-1. 

18. Zhu, J.; Emerson, S.G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002, 21, 3295–3313. 
https://doi.org/10.1038/sj.onc.1205318. 

19. Venezia, T.A.; Merchant, A.A.; Ramos, C.A.; Whitehouse, N.L.; Young, A.S.; Shaw, C.A.; Goodell, M.A. Molecular signatures of 
proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004, 2, e301. https://doi.org/10.1371/journal.pbio.0020301. 

20. Tenen, D.G.; Hromas, R.; Licht, J.D.; Zhang, D.E. Transcription factors, normal myeloid development, and leukemia. Blood 1997, 

90, 489–519. 
21. Antonchuk, J.; Sauvageau, G.; Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002, 

109, 39–45. https://doi.org/10.1016/s0092-8674(02)00697-9. 
22. Sun, Y.; Zhou, B.; Mao, F.; Xu, J.; Miao, H.; Zou, Z.; Phuc Khoa, L.T.; Jang, Y.; Cai, S.; Witkin, M.; et al. HOXA9 Reprograms the 

Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018, 34, 643–658 e645. https://doi.org/10.1016/j.ccell.2018.08.018. 
23. Magnusson, M.; Brun, A.C.; Miyake, N.; Larsson, J.; Ehinger, M.; Bjornsson, J.M.; Wutz, A.; Sigvardsson, M.; Karlsson, S. 

HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007, 109, 3687–
3696. https://doi.org/10.1182/blood-2006-10-054676. 

24. Qiu, X.; Hill, A.; Packer, J.; Lin, D.; Ma, Y.A.; Trapnell, C. Single-cell mRNA quantification and differential analysis with Census. 
Nat. Methods 2017, 14, 309–315. https://doi.org/10.1038/nmeth.4150. 

25. Min, I.M.; Pietramaggiori, G.; Kim, F.S.; Passegue, E.; Stevenson, K.E.; Wagers, A.J. The transcription factor EGR1 controls both 
the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008, 2, 380–391. 
https://doi.org/10.1016/j.stem.2008.01.015. 

26. Cartron, P.F.; Blanquart, C.; Hervouet, E.; Gregoire, M.; Vallette, F.M. HDAC1-mSin3a-NCOR1, Dnmt3b-HDAC1-Egr1 and 
Dnmt1-PCNA-UHRF1-G9a regulate the NY-ESO1 gene expression. Mol. Oncol. 2013, 7, 452–463. 
https://doi.org/10.1016/j.molonc.2012.11.004. 

27. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined 
factors. Cell 2006, 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024. 

28. Feinberg, M.W.; Wara, A.K.; Cao, Z.; Lebedeva, M.A.; Rosenbauer, F.; Iwasaki, H.; Hirai, H.; Katz, J.P.; Haspel, R.L.; Gray, S.; et 
al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO. J. 2007, 26, 4138–4148. 
https://doi.org/10.1038/sj.emboj.7601824. 

29. Jiang, J.; Chan, Y.S.; Loh, Y.H.; Cai, J.; Tong, G.Q.; Lim, C.A.; Robson, P.; Zhong, S.; Ng, H.H. A core Klf circuitry regulates self-
renewal of embryonic stem cells. Nat. Cell Biol. 2008, 10, 353–360. https://doi.org/10.1038/ncb1698. 

30. Marine, J.C.; McKay, C.; Wang, D.; Topham, D.J.; Parganas, E.; Nakajima, H.; Pendeville, H.; Yasukawa, H.; Sasaki, A.; 
Yoshimura, A.; et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 1999, 98, 617–627. 
https://doi.org/10.1016/s0092-8674(00)80049-5. 

31. Matsui, K.; Ezoe, S.; Oritani, K.; Shibata, M.; Tokunaga, M.; Fujita, N.; Tanimura, A.; Sudo, T.; Tanaka, H.; McBurney, M.W.; et 
al. NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells. Biochem. 
Biophys. Res. Commun. 2012, 418, 811–817. https://doi.org/10.1016/j.bbrc.2012.01.109. 

32. Parmigiani, A.; Nourbakhsh, A.; Ding, B.; Wang, W.; Kim, Y.C.; Akopiants, K.; Guan, K.L.; Karin, M.; Budanov, A.V. Sestrins 
inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014, 9, 1281–1291. 
https://doi.org/10.1016/j.celrep.2014.10.019. 

33. Kaul, P.; Savu, A.; Yeung, R.O.; Ryan, E.A. Association between maternal glucose and large for gestational outcomes: Real-
world evidence to support Hyperglycaemia and Adverse Pregnancy Outcomes (HAPO) study findings. Diabet. Med. 2022, 39, 
e14786. https://doi.org/10.1111/dme.14786. 

34. Wang, J.; Moore, D.; Subramanian, A.; Cheng, K.K.; Toulis, K.A.; Qiu, X.; Saravanan, P.; Price, M.J.; Nirantharakumar, K. 
Gestational dyslipidaemia and adverse birthweight outcomes: A systematic review and meta-analysis. Obes. Rev. 2018, 19, 1256–
1268. https://doi.org/10.1111/obr.12693. 

35. Chen, K.Y.; Lin, S.Y.; Lee, C.N.; Wu, H.T.; Kuo, C.H.; Kuo, H.C.; Chuang, C.C.; Kuo, C.H.; Chen, S.C.; Fan, K.C.; et al. Maternal 
Plasma Lipids During Pregnancy, Insulin-like Growth Factor-1, and Excess Fetal Growth. J. Clin. Endocrinol. Metab. 2021, 106, 
e3461-e3472. https://doi.org/10.1210/clinem/dgab364. 

36. Izzo, F.; Lee, S.C.; Poran, A.; Chaligne, R.; Gaiti, F.; Gross, B.; Murali, R.R.; Deochand, S.D.; Ang, C.; Jones, P.W.; et al. DNA 
methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 2020, 52, 378–387. 
https://doi.org/10.1038/s41588-020-0595-4. 

105



Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 20 of 20 
 

 

37. Wiench, M.; John, S.; Baek, S.; Johnson, T.A.; Sung, M.H.; Escobar, T.; Simmons, C.A.; Pearce, K.H.; Biddie, S.C.; Sabo, P.J.; et al. 
DNA methylation status predicts cell type-specific enhancer activity. EMBO. J. 2011, 30, 3028–3039. 
https://doi.org/10.1038/emboj.2011.210. 

38. Barker, D.J. In utero programming of chronic disease. Clin. Sci. (Lond.) 1998, 95, 115–128. 
39. Wilson, A.; Laurenti, E.; Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 

2009, 19, 461–468. https://doi.org/10.1016/j.gde.2009.08.005. 
40. Kotowski, M.; Safranow, K.; Kawa, M.P.; Lewandowska, J.; Klos, P.; Dziedziejko, V.; Paczkowska, E.; Czajka, R.; Celewicz, Z.; 

Rudnicki, J.; et al. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm 
newborns. BMC. Pediatr. 2012, 12, 148. https://doi.org/10.1186/1471-2431-12-148. 

41. Yu, V.W.C.; Yusuf, R.Z.; Oki, T.; Wu, J.; Saez, B.; Wang, X.; Cook, C.; Baryawno, N.; Ziller, M.J.; Lee, E.; et al. Epigenetic Memory 
Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell 2017, 168, 944–945. 
https://doi.org/10.1016/j.cell.2017.02.010. 

42. Suzuki, M.; Jing, Q.; Lia, D.; Pascual, M.; McLellan, A.; Greally, J.M. Optimized design and data analysis of tag-based cytosine 
methylation assays. Genome. Biol. 2010, 11, R36. https://doi.org/10.1186/gb-2010-11-4-r36. 

43. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic. Acids. Res. 2015, 43, e47. https://doi.org/10.1093/nar/gkv007. 

44. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. 
OMICS 2012, 16, 284–287. https://doi.org/10.1089/omi.2011.0118. 

45. Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple 
combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell 
identities. Mol. Cell 2010, 38, 576–589. https://doi.org/10.1016/j.molcel.2010.05.004. 

46. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. 
Biol. 2014, 15, 550. https://doi.org/10.1186/s13059-014-0550-8. 

47. Aibar, S.; Gonzalez-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, 
P.; Aerts, J.; et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 2017, 14, 1083–1086. 
https://doi.org/10.1038/nmeth.4463. 

48. Zerbino, D.R.; Wilder, S.P.; Johnson, N.; Juettemann, T.; Flicek, P.R. The ensembl regulatory build. Genome. Biol. 2015, 16, 56. 
https://doi.org/10.1186/s13059-015-0621-5. 

 

106



RESULTS 

 

107 
 

I.2. Complementary works 

I.2.a. Materiels and methods 

I.2.a.i. Reagents, primers and siRNAs 

REAGENT REFERENCE SUPPLIER 

Human CD34+ Cell Nucleofector™ Kit VPA-1003 Lonza 

LKLF/KLF2 siRNA (h) sc-35818 santa-cruz 

Egr-1 siRNA (h) sc-29303 santa-cruz 

SiRNA  Control-A sc-37007 santa-cruz 

RNeasy Micro Kit (50) 74004 Qiagen 

Human Methylcellulose Complete Media HSC003 RnD systems 

Invitrogen™ SuperScript™ III Reverse 
Transcriptase 

18080093 fisher 
scientific 

dNTP mix (10 mM each) 18427013 thermofisher 

Random Primers 48190011 thermofisher 

primers EGR1 and KLF2 see primers table 

 

PRIMER_NAME SEQUENCE TARGET PRODUCT 
SIZE 

pEGR1_forward TTCAACCCTCAGGCGGACAC EGR1 71 

pEGR1_reverse GAGATGTCAGGAAAAGACTCTGCG EGR1 71 

pKLF2_forward AGAGGGTCTCCCTCGATGAC KLF2 100 

pKLF2_reverse CTCGTCAAGGAGGATCGTGG KLF2 100 

 

I.2.a.ii. RNA velocity analysis 

RNA velocity analysis was performed using Velocito to produce the spliced and unspliced gene 

expression matrices556 and scVelo to estimate the RNA velocity across cells through dynamical 

modelling557. We then used both RNA velocity and the pseudotime analysis (published results) to 

estimate the cell fate of the cell, i.e. toward which differentiation state the cell is going to. To calculate 

this cell fate, we used the cell transition matrix produced by scVelo. The transition matrix gives the 

probability for each cell to differentiate in other cells based on this newly synthetized mRNA (pre-

mRNA). Then, by multiplying these probabilities by the pseudotime of others cells we get a prediction 

of the future pseudotime of the cells, i.e toward with differentiation state the cell go. By subtracting 

this predicted pseudotime by this actual pseudotime, we obtained its expected pseudotime shift, 

representing the intensity of the cell differentiation, i.e. its differentiation bias.  

I.2.a.iii. Rapidly processed samples 

To produce rapidly processed samples, we removed the HTO multiplexing part from the scRNA-

seq protocol. To pool samples together and allow cell multiplexing, we pool samples depending on 

their sex, because samples can then be demultiplex based on sex specific transcripts. Each 

cryopreserved CD34+ cells from each sample were thawed in a water bath at 37°C 1min before to be 
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resuspended in 10ml of pre-heated medium. Cell suspensions were filtered with a MACS pre-

separation filter 30 μm and centrifuged 5min at 300g. Cell pellets were resuspended in Deionized 

Phosphate Buffer Saline 1X (DPBS, GIBCO™, Fisher Scientific 11590476) with 0.04% Bovine serum 

albumin (BSA) for counting on a Corning Cytosmart cell counter by Trypan blue (Trypan Blue solution, 

11538886, Fisherscientific) counterstaining for viability check. Samples was pooled by 2 based on their 

sex (1 male and 1 female by pool) and cell suspension was loaded on a Chromium 10x Genomics 

controller following the manufacturer protocol using the chromium single-cell v3 chemistry with single 

indexing. After library preparation, the pool was sequenced using 100pb paired-end reads on NOVAseq 

6000 system following the manufacturer recommendations (Illumina). Gene expression matrices were 

generated using the CellRanger count pipeline. 

I.2.a.iv. Gene silencing  

We used electroporation (nucleofection) to transfect siRNAs targeting KLF2 transcripts on cells. 

This experiment require a large number of cells because induce significant cell loss during 

electroporation step (>50%). To obtain a maximum of cells, CD34+ cells were isolated from fresh CTRL 

cord blood and put in culture overnight in StemPro™ CD34+ Cell Medium (GIBCO™, Fisher Scientific). 

Then, the Human CD34+ Cell Nucleofector™ Kit (Lonza) was used to perform the siRNAs 

electroporation following manufacturer recommendation. After centrifugate for 10min at 200g, the 

cell pellet was resuspended in 100 µL of nucleofector solution and 5 µL of  1 µM siRNAs solution was 

added (final concentration= 50 nM). The cells + siRNAs solution was transfered in a cuvette and put in 

the Nucleofector™ 2b Device (Lonza). The program U-008 was runned. After electroporation, 500 µL 

of pre-heated CD34+ Cell medium supplemented with stimulating cytokines (SCF,GM-CSF, Tpo and IL-

6 ,STEMCELL Technologies) was added and cells was incubated in 24 well plaque overnight at 37°C in 

a humidified 5% CO2 incubator. Then, RNA isolation for RT-qPCR gene silencing validation, or scRNA-

seq protocol was performed. 

I.2.a.v. RT-qPCR 

RNA was isolated using the RNeasy Micro Kit (Qiagen). RNA was retro transcribed into cDNA 

using the Invitrogen™ SuperScript™ III Reverse Transcriptase. 1ng of cDNA was mix with 1X SYBR Green 

master mix (Thermofisher), and 1µL of 10µM reverse / forward primers mix and H2O qsp 20 µL, and 

incubated in the QuantStudio 7 Pro qPCR system (Thermofischer). Relative normalized expression 

change was determined using the RPLP0 housekeeping gene expression as reference gene. 

I.2.a.vi. Single-cell multimodal libraries preparation  

CD34+ cells where incubated 2 hours in StemPro™ CD34+ Cell Medium with or without 

stimulating cytokines (SCF,GM-CSF, Tpo and IL-6) at 37°C in a humidified 5% CO2 incubator. Then nuclei 
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where isolated following 10X Genomics protocol of nuclei isolation for single-cell multiome ATAC + 

Gene expression sequencing558. Then, single-cell multimodal analysis was performed using Single Cell 

Multiome ATAC + Gene Expression Sequencing kit following manufacturer recommendations559. After 

library preparation, the Gene expression and ATAC libraries was sequenced separately following 10X 

Genomics recommandations.  Feature-barcode matrices (of gene expression and peaks) were 

generated using the CellRanger ARC pipeline(10X Genomics). 

I.2.a.vii. Data Processing and Statistical Analysis 

Gene expression and peak counts matrices were filtered for low quality cells, and normalized  

following Seurat and Signac framework 560,561 as described in published method. Cells were annotated 

for hematopoietic lineage based on the hematomap by using the TransferLabel method of Seurat. 

For rapidly processed samples, lineage specific pseudobulk differential expression analysis was 

performed using DESeq2562.For siRNAs and single-cell multiome datasets, lineage specific differential 

expression analysis was performed using the wilcoxon test on the SCTransform normalized matrices. 

Functional enrichment analysis was performed using ClusterProfiler Package563. Regulons enrichment 

analysis in differentially expressed genes was performed using Fisher’s exact test (phyper function) or 

the fgsea package564 as described in the results. Regulon activity in cells was measured using the AUCell 

package565. 

I.2.b. Results 

I.2.b.i.  Validation of the LGA HSC differentiation bias 

We observed an HSC shift toward more differentiated cells in LGA suggesting a differentiation 

bias of LGA HSC.  However, it was unclear if this HSC proportion decrease in LGA was linked to a 

differentiation bias of LGA HSC during the time of cells preparation. Indeed, after thawing, cells 

preparation takes ~2 hours to prepare according to the sample multiplexing protocol (HTO), and some 

cues suggest that cells are responding to a stress or a stimulation regarding that the most active 

regulons in HSCs are related to the immediate early response (ARID5A, EGR1, KLF2, FOSB, and JUN; 

See Supplemental Table S7 of the article). To answer this question, I used two independent strategies: 

i) estimate the differentiation bias thanks to RNA velocity analysis, ii) compare the subpopulation shift 

with rapidly processed cells. 

Estimate the differentiation bias thanks to RNA velocity analysis 

To further validate the putative differentiation bias in LGA HSCs, we analyzed the dynamics of 

the transcriptional program in LGA and Control HSPCs thanks to the RNA velocity analysis (scvelo)557. 

We can then estimate if this program leads toward differentiation or stemness conservation, and thus 

predict the cell fate of each cell. Velocity calculation relies on the ratio of pre-mRNA over mature mRNA 

109



RESULTS 

 

110 
 

(how a gene are actively transcribed) for each gene in each cell. Using this approach, we were able to 

estimate the RNAs velocity for 12 684 cells and to infer a transcriptional dynamic (velocity vectors) 

across all cells (Figure 16A). Interestingly, while the late branches (erythroid, myeloid and lymphoid 

progenitors) have a transcriptional dynamic toward differentiation, the main transcriptional dynamics 

of HSC and MPP cells are toward stemness conservation, so from MPP to HSCs, further supporting that 

the main transcriptional program in our cells are related to the regulation of activation. Indeed, we 

observed that the genes the most actively expressed (bigger RNA velocity and variance across HSPCs) 

are genes related to control of activation like FOS, DUSP1, FOSB, ZFP36, HES1, and NFKBIA (Figure 16B). 

Concordant with that, by looking at regulon’s enrichment for the main contributors of this 

transcriptional dynamics model, we found the EGR1 regulon being the most enriched, while KLF2 and 

JUN are in the top5 (Figure 16C). We used this transcriptional dynamic to estimate toward which 

differentiation states the cells are transitioning and compared then LGA and CTRL cells dynamics (see 

method). We observed that LGA HSCs transition faster toward more differentiated cells compared to 

CTRL HSCs, while such differences doesn’t appear significant in the others lineages (Figure 16D). These 

results confirms that LGA HSCs have a differentiation bias compared to CTRL HSC, supporting published 

transcriptional and functional alterations.  
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Figure 16: RNA velocity analysis. (A) Velocity stream representing the main 

transcriptional dynamics within HSPCs. (B) Top genes contributing to t he first principal  

components (PC_1 and PC_2) of the gene velocity variability.  (C) Regulons enrichment 

for main contributors of the transcriptional  dynamics (higher change of RNA velocity 

across cells). (D) Predicted pseudotime shift for LGA and CTRL at cell level (left) and at 

sample level (right). Statistical difference between LGA and CTRL samples was tested 

using wilcoxon test, only HSC have a difference close to the statistical signifiance (p -

value =0.05).  

Compare the subpopulation shift with rapidly processed cells  

To tests if cells respond to a stress/stimulation during time of cells preparation, we processed 

new LGA and CTRL samples without the Antibody based multiplexing (HTO) protocol reducing 

considerably cell preparation/incubation time (see methods). We compared first if there is a 

transcriptional difference between both protocols, i.e. if HTO protocol indeed induce a cell response, 

and compared then the LGA vs CTRL samples in both condition. 

To observe if the HTO multiplexing protocol led to a stress/stimulation response, we processed 

three same CTRL samples with the two protocols (n=3 samples representing a total of 6776 rapidly 

process cells and 1749 HTO processed cells).  We identified a strong sample wide gene expression 

difference between the two protocols at both cell and sample level (Figure 17A-B). We identified 1518 
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differentially expressed genes comparing HTO versus rapidly processed samples (adjusted p-

value<0.05 and |log2FC|>0.5), including 1075 upregulated in HTO samples enriched for pathways 

regulating stress response like Foxo, NF-kappa B, and MAPK signaling, but also biological process 

related to stress or extrinsic stimulation (Figure 17B). These results confirms that the HTO protocol 

trigger a stress on our cells. Then, we performed a DEG analysis at subpopulation level to know if this 

response was subpopulation specific. The results of the DEGs analysis at subpopulation level showed 

that the main cellular response to HTO protocol comes from the HSC subpopulation (Figure 18C). The 

upregulated genes on HSCs were similar to the one found regarding all HSPCs, confirming that the main 

transcriptional response to HTO protocol is in HSCs (Figure 17D). Futhermore, by using SCENIC to infer 

TF regulons activity across each cells and comparing regulon activity between HTO prepared and 

rapidly process cells, we observed that HTO prepared HSCs have a strong increased activity for FOSB, 

ARID5A, EGR1, JUN, KLF2, FOS, JUND and KLF4, further supporting the role of these regulons in the 

stress/stimulation response(Figure 17E). Based on G2/M gene expression signature, we observed also 

that the HSC and MPP cells prepared with HTO are more committed in the mitosis process (G2/M 

phase) than non HTO-prepared cells (Figure 17F). These results confirm that the HTO-based protocol 

trigger a cellular activation, especially in HSC, leading to entry in proliferation and differentiation 

process. The fact that HSC respond more to the environment compared to other HSPCs fit with the 

112



RESULTS 

 

113 
 

fact that HSC activate quickly in the bone marrow niche in response to blood loss or other 

hematopoietics challenge to ensure blood homeostasis or respond to infection371. 

Figure 17 : HTO protocol effect. (A) volcano plot of differentially expressed genes (DEGs)  

in HTO versus non-HTO prepared cells for each individual. (B) MA plot of DEGs using 

pseudobulk analysis. (C) Functional enrichment of GO Biological Process and KEGG 

pathways enriched in upregulated genes in HTO prepared cells  (D) Heatmap of the gene 

expression log2(FoldChange) comparing HTO vs non -HTO prepared samples for each 

lineage. (E) Number of DEGs by lineage.  (F)  Differential regulons activity between HTO 
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vs non-HTO samples  (wilcoxon test).  (G) Cell cycle phase proportion by sample within 

HSC/MPP cells 

Thanks to these rapidly processed samples, we can study if the LGA specific transcriptional and 

functional alterations reflect a difference of cellular response to the stimulating/challenging 

environment during cells preparation. We processed 6 LGA and 7 CTRL samples with this quick cell 

manipulation condiditions. We annotated cells subpopulation based on the hematopoietics reference 

map (hematomap) established in the published results. We compared transcriptome within each 

subpopulation and subpopulation distribution similarly to the HTO processed samples. Based on these 

samples, we did not observe significant gene expression change across lineage between LGA and CTRL 

samples (Figure 18A). Concordantly, we did not observed significant subpopulation proportion change 

between LGA and CTRL (Figure 18B). These results suggest that rapidly processed samples LGA and 

CTRL samples are relatively similar in term of gene expression and HSPC composition when not 

challenged by stressful/stimulating environment and thus that both gene expression and 

subpopulation shift observed in HTO processed samples reflect a cellular intrinsic alteration of the 

response to stress/stimulation in LGA.  These results are concordant with the fact that transcriptional 

alteration observed in LGA samples target the immediate early response genes, which are expressed 

specifically in HTO-prepared samples. 
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Figure 18 : LGA vs CTRL comparison from rapidly processed samples. (A) volcano plot of 

differentially expressed genes (DEGs) in LGA versus CTRL (pseudobulk DESeq2 analysis) . 

(B) Subpopulation distribution in LGA and CTRL samples  

  

I.2.b.ii. Validate the EGR1/KLF2/KLF4 regulatory network and its role in HSC activation   

Our published results have highlighted a gene regulatory network, govern by EGR1, KLF2 and 

KLF4 TFs, being epigenetically and transcriptionally altered in LGA. These regulatory networks were 

inferred based on co-expression analysis of TFs and putative downstream target genes using our 

scRNA-seq data (SCENIC), and further filtered thanks to scATAC-seq data observing if accessible regions 

close to a gene have the specific TF motif. However, this method assume that the closest gene of an 

accessible region is the gene regulated by this accessible region. Regarding that DNA topology/ folding 

this assumption can be false in certain case because of DNA 3D conformation. Then, to validate the 

relevance of the inferred regulatory network of KLF2, EGR1 and KLF4, we used another strategy to 

associate accessible region with gene expression. This strategy leveraged the single cell multimodal 

assay assessing both chromatin accessibility and gene expression in the same cells. The main 

advantage of this analysis is that we can directly correlate the chromatin accessibility of an open 

chromatin region (peak) to the neighbor genes expression and therefore link a peak to a gene more 

precisely. We compared also stimulated versus unstimulated cells to highlight if this regulatory 

network is stimulation dependant. To do that we used IL6, CSF, Tpo and Flt3 cytokines known to 
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activate HSCs and allow their expansions.  We recovered 4354 cells from unstimulated and stimulated 

condition (2001 for unstimulated, 2353 for stimulated), and annotated them thanks to the hematomap 

(Figure 19A).  

Based on lineage subpopulation analysis, we observed a net decrease of HSC in the stimulated 

conditions compared to unstimulated conditions (Figure 19B). This change is accompagnied by a net 

increase of MPP/LMPP cells as well as DC progenitors. These results show that cytokines stimulation 

activate HSC toward differentiation process. By performing lineage specific differential expression 

analysis comparing stimulated to unstimulated HSC, we observed 581 DEGs, including 239 upregulated 

and 342 downregulated genes (Figure 19C). Importantly, we observed that the upregulated genes are 

strongly enriched for regulons of JUN, FOSB, ARID5A, FOS, and JUNB being the top5 most enriched 

regulons, while EGR1 and KLF2 regulons are also found significantly enriched (Figure 19D). These 

results support that the cell response observed in HTO prepared cells are similar to a response to 

physiological cytokines and confirms that the regulons altered in LGA HSC are regulons regulating 

stimulation response. These new data further support that the cellular response to stimulation is 

altered in LGA HSCs. 

 

Figure 20: Single-cell multimodal analysis of cytokine stimulation. (A) UMAP  

representation of cells integrating both v ariability of gene expression and chromatin 

accessibility. (B) Subpopulation distribution in stimulated (grey bar)  and unstimulated 
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(black bar) sample. (C) Differential expression analysis of stimulated versus 

unstimulated HSC (wilcoxon test). Red point represent DEGs (adjusted p-value<0.05 and 

|log2FC|> 0.25). (D)Regulons enrichment in upregulated genes (Fisher’s exact test)  

To validate more precisely the gene regulatory network altered in LGA and the impact of 

methylation, we infer peak-genes links for all the genes taking part of the previously identified regulons 

(n=2476 genes). Using the correlation between peak accessibility and neighbors’ gene expression, we 

identified 4281 peak-gene links across 1487 genes representing 60% of the interrogating genes (Figure 

20A). These gene expression associated peaks are candidate cis-regulatory elements (CREs; e.g. 

enhancer) able to regulate associated gene expression. Considering genes associated to EGR1, KLF2 

and KLF4 regulons (n=123 genes), we identified candidate CREs for 78 genes (63% of the genes). 

Interestingly, we found ZFP36L2 associated to a lot of candidat CREs (26) suggesting tight regulation 

(Figure 20B). This gene is an RNA-binding protein which is known to promote cell quiescence and to 

regulate erythroid differentiation566. Interestingly, it has also a role in promoting mRNA decay of 

immediate early genes (IEGs)567, highlighting its role in regulating response to stimulation. Then, we 

focused on CREs containing EGR1, KLF2, or KLF4 TF motif. We observed that 46% of genes in EGR1 

regulon have an EGR1 motif on a CREs (p-value < 0.05, over-representation test), while 45% for KLF2 

(p-value < 0.01, over-representation test), and only 38% for KLF4 (non-significant, over representation 

test) (figure 20C). Even if this analysis was not able to validate every inferred TF-gene regulations, it 

shows that the EGR1 and KLF2 regulons inferred with previous methods are enriched for candidate 

CREs containing the corresponding TF motif, validating partially TF influence on these genes. However, 

these results were not able to validate the influence of KLF4 on inferred regulon. Together, these 

results highlight the interest of using single-cell multimodal data to find, or validate, TF-gene regulatory 

interaction based on correlation between chromatin accessibility and gene expression.   

 Then, to validate the putative influence of LGA associated methylation on gene expression, 

we integrate this newly identified regulatory information with methylation data. Overall, 2% of the 

~750k queried CpGs fall in CREs, while 6% of the 4815 DMCs, showing 2.5 fold enrichment for DMCs 

in candidate regulatory elements (p-value<0.0001, over-representation test), further supporting 

putative DMCs impact on gene expression. Critically, these DMCs associated CREs are strongly 

enriched for EGR1/KLF2/KLF4 TF motifs with 91% of these CREs (198/216) having at least one of this 

TF motif (p-value < 0.0001, over-representation test; Figure 20D). These results further confirm that 

the DNA hyper-methylation in LGA target the EGR1/KLF2/KLF4 gene regulatory network. 
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Figure 20: Validation of the EGR1-KLF2-KLF4 regulatory network epigenetics alteration.  

(A)Schema of peak gene linkage method.  Reprinted from 10X genomics website support R 

.  (B) Peak gene linkage in the ZFP36L2 locus. The score of the linkage correspond to the 

correlation between the peak accessibilty and the g ene expression.  (C) Over-

representation of EGR1, KLF2 and KLF4 regulons (x axis) in CREs containing EGR1, KLF2 

or KLF4 motif (boxes). P-value of the enrichment are calculated using Fisher’s exact test.    

Red point represent p-value < 0.05.  (D) Venn diagram of the intersection between CREs  

containing DMCs (left)  and CREs containing EGR1, KLF2 or KLF4 motif.  

Gene silencing-based validation 

We found a correlation between hypermethylation, chromatin rearrangement, and decrease 

expression of EGR1/KLF2/KLF4 related transcriptional network associated with a reduce HSC ability to 

stay quiescent in response to challenging environment in LGA samples. To assess the causality between 

this network downregulation and the differentiation bias in LGA samples; we performed gene silencing 

experiments, using siRNAs targeting KLF2. We chose to target KLF2 because being the most upstream 

                                                             
Rhttps://support.10xgenomics.com/single-cell-multiome-atac-
gex/software/pipelines/latest/algorithms/feature-linkage  
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regulators based on co-regulatory network analysis results (SCENIC). This gene silencing experiment 

have also the potential to further validate the KLF2 influence on the downstream target genes 

(regulon) infer thanks to both scRNA-seq and scATAC-seq data. To perform this experiment, we used 

a fresh sample of CD34+ cells and transfect cells either with siRNAs targeting KLF2 transcripts (siKLF2 

condition) or with negative control (siCTRL condition) and let the cells over-night in incubation on 

CD34+ cells optimized medium with stimulating cytokines (see Method). We first confirmed that siKLF2 

indeed reduce expression of KLF2 through RT-qPCR (Figure 21A). We then performed scRNA-seq and 

recover 1533 and 2116 good quality cells from siCTRL and siKLF2 respectively. We annotated our cells 

based on the hematomap (Figure 21B-C) and found that the overnight incubation with media 

supplemented with cytokines lead to increase differentiated cells, because only 4% of cells were 

annotated as HSC compare to the 24% in our previous unincubated samples (Figure 21D). To observe 

if KLF2 silencing led to differentiation bias as observed in LGA samples, we looked at subpopulation 

distribution between siKLF2 and siCTRL samples. We observed a slight reduction of HSC and MPP cells 

in siKLF2 compared to siCTRL (Figure 21E). Even if the difference appears significiant using a chisquared 

test under the assumption that siCTRL distribution is the ground truth, our sample size is very limited. 

This experiment should be reproduce at least 3 times to further validate the statistical signifiance. 

To validate the role of KLF2 regulating the downstream genes identified with previous analysis, 

we performed differential expression analysis on siKLF2 compared to siCTRL HSCs focusing on genes 

from the KLF2 regulon (n= 89). We decided to focus the test on HSC cells specifically because we have 

previously shown that KLF2 alterations mainly target HSCs. We further confirm that KLF2 is specifically 

active in HSC, by measuring the KLF2 regulons activity score using AUCell algorithm (Figure 21F). We 

observed only few DEGs between siKLF2 and siCTRL HSC passing adjusted p-value threshold 0.05 (n=4), 

but 15/89 (16%) genes at nominal p-value (Figure 21G). This relative weak result can be explained by 

the relative low number of HSCs and by the transfection efficiency (transfection efficiency was 

estimated being around 50% based on preliminary analysis).  

To go beyond this relative finding, we performed an unsupervised differential expression 

analysis and gene set enrichment analysis (GSEA) to see if these transcriptional alterations were 

specific to the KLF2 regulon. We observed 4 regulons significantly enriched in downregulated genes 

(adjusted p-value <0.1), with KLF2 regulon being the second most enriched regulon (Figure 21H). 

Interestingly, the first most enriched regulon was STAT3, suggesting close link between KLF2 and STAT3 

activity. These results confirm previous inferred data using both co-expression and chromatin 

accessibility and highlight putative regulatory role of KLF2 on STAT3 signaling. 
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Figure 21: Gene silencing of KLF2.  (A)Validation of the KLF2  gene expression silencing 

by RT-qPCR. (B) UMAP representation of the scRNA-seq dataset. Cell were annotated 

based on the hematomap reference and lineage specific markers expression. (C) Lineage 

specific markers expression. (D)  Distribution of cell type in this experiment (left)  

compared to distribution from previous uncultured datasets(right).  (E)  proportion of 
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HSC and MPP cells in sample transfect with  siRNAs targeting KLF2 (siKLF2) compared to 

sample exposed to siRNAs Control (siCTRL). (F) Activity score (AUCell) of KLF2 regulon 

in cells. (G) Differential expression analysis of HSCs exposed to siKLF2 compared to HSC 

exposed to siCTRL (wilcoxon test).  Red point represent DEGs (adjusted p -value <0.05 

and |log2FC|>0.25).  (H) Regulons enrichment analysis using GSEA in differential 

expression results. NES: Normalized Enrichment Score.  NES<0 indicate enrichment in 

downregulated genes in siKLF2 HSCs. Red point represent regulons significantly enriched 

(adjusted p-value<0.1)  

 

I.3. Conclusion 

I.3.a. Characterize the epigenetic memory of LGA HSPCs  

Delahaye et al have previously shown that LGA HSPCs have a global DNA hypermethylation 

enriched for candidate cis regulatory elements and close to genes known to regulate metabolic 

function and stem cells properties349. Here we validated this DNA methylation alteration using an 

independent cohort and integrate all data to gain in discovery power. 

  One main challenge of DNA methylation analysis is to link with putative functional alteration.  

Indeed, functional enrichment analysis is performed at gene level and not at CpGs level. CpGs are 

heterogeneously distributed across the genome, which introduce a bias when linking to gene. Some 

tools have been developed trying to overcome this issue correcting for DNA methylation data specific 

bias568–570. Recently, Maksimovic et al have developed GOmeth and GOregion to better take into 

account methylation data specific bias allowing to perform functional enrichment analysis weighting 

each CpGs methylation differences according to the gene specific context570.  

Here, we weighted each CpG methylation change with tissue specific eQTL data, and histones 

profiles, as well as global regulatory annotation while correcting for CpG bias to obtain a score by gene 

reflecting the probability that the methylation change affect expression of them. We showed that this 

score better predict gene expression change than classical methods highlighting the predictive power 

of this method. Thanks to this approach, we predicted the DNA methylation change affecting genes 

regulating fetal growth and organ development, as well as stem cells pathway including notably Wnt 

signaling pathway and genes regulating cell fate commitment. Wnt signaling is a key pathway 

regulating stem cells differentiation for organogenesis as well as tissue regeneration571–573. DNA 

methylation of these pathways has been found to alter stem cells differentiation capacity in adipocytes 
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derived stem cells574,575. Then, these results further confirm putative impact of DNA methylation 

alteration in LGA HSPCs on regulation of their differentiation. 

Even if different epigenetics layer (methylation, histone marks, chromatin conformation) co-

exist in cells, the interactions between them are not always clear. Recently, a clear link between DNA 

methylation and chromatin accessibility have been found in Arabidopsis model, where Zhong et al 

showed that ablation of DNA methylation durably affect chromatin accessibility576.  

Here, integrating bulk DNA methylation with scATAC-seq data, we observed in our LGA model 

that the increased DNA methylation observed is associated with a decrease chromatin accessibility, 

showing in human cells this link between DNA methylation and chromatin accessibility. We found also 

that the most enriched TF motifs in DMCs regions are also those found in decrease accessibility regions 

further supporting the interplay between DNA methylation and chromatin accessibility.  The TFs motifs 

enriched in epigenetically altered regions include TFs of the SP family like SP2 and SP3 encoding for 

zinc finger proteins having key role in Wnt signaling mediated embryogenesis572. They also include the 

zinc finger protein EGR1, which regulate hematopoetic stem cells proliferation and response to 

extrinsic stimuli577,578 , as well as the Kruppel family TFs KLF2 and KLF4, which are key role in stem cells 

self renewal  and regulation of differentiation579–581. Interestingly, within HSPC, LGA epigenetics 

alterations seems to affect specifically HSC. Indeed, we found that both DMCs and chromatin 

rearrangement are enriched in HSC specific open chromatin regions. These results highlight the 

interest to study epigenetics layers at single-cell level rather than bulk and suggest transcriptional 

consequences on HSC specifically. Together, we found in LGA a coordinated increase DNA methylation 

and decrease chromatin accessibility in candidat regulatory regions of TFs known to regulate 

proliferation and differentiation of stem cells suggesting impact on expression of these genes and 

regulation of differentiation in these cells. 

I.3.b. Decipher the impact on gene expression 

Single-cell transcriptomic data can both highlight transcriptomically distinct subpopulation and 

gene expression change between two conditions within the subpopulations. Several previous scRNA-

seq studies have decipher the different subpopulations present in cord blood HSPC highlighting the 

transcriptomics and functional heterogeneity within phenotypically defined population122,582–584. Here 

we identified 7 distinct subpopulations in HSPCs recapitulating the different lineage found in the cord 

blood hematopoietic compartment, from LT-HSC to restricted erythroid, myeloid and lymphoid 

progenitors. Notably, we identified like a recent study on developmental hematopoiesis585 the oligo-

potential erythro-myeloid progenitors (EMP) connecting HSC/MPPs to erythroid, megakaryocytes, and 
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mast cells. This oligo-potential progenitor appears under the governance of GATA2 and TAL1 TF based 

on markers expression and regulons analysis.  

To decipher LGA specific transcriptomic change in these subpopulations, we performed 

pseudobulk differential expression analysis allowing to find robust gene expression difference in LGA 

compared to CTRL samples. We observed that the main expression changes were in HSC, with a 

significant number of genes (285) being downregulated. These downregulated genes are enriched for 

genes negatively regulating cell growth signaling and proliferation, and response to stress or 

stimulation, suggesting decrease ability of LGA HSC to control differentiation and proliferation in 

response to stimulation. By integrating these results with the epigenomics change discuss in previous 

section, we observed that these downregulated genes were enriched for hyper-methylated genomics 

regions as well as regions with decrease accessibility highlighting the putative epigenetics influence on 

gene expression. Together, these results suggest that the epigenetics memory of fetal overgrowth 

impact a transcriptional program controlling differentiation and proliferation of HSC and response to 

stress/stimulation. Such mechanism of epigenetics memory was recently found on hair follicle bulge 

stem cells where previous exposure to wound damages was associated with durable chromatin 

accessibility change influencing stem cell’s responses to future assaults379. 

Izzo et al recently demonstrated influences of DNA methylation on TF activity in the context of 

hematopoietic differentiation393. Researchers found TFs binding CpG rich DNA motifs, notably key 

erythroid TF Klf1 and Tal1, were affected by disruption of DNA methylation and driving cell fate change. 

Here, combining co-regulatory network analysis of scRNA-seq data (using SCENIC tool), and TF motif 

accessibility based on scATAC-seq data, we identified EGR1, KLF2 and KLF4 are putative TF upstream 

regulator affected by the epigenetics change. We confirmed that the regulons of these TFs were 

enriched for hypermethylated and decrease accessibility genomics regions, supporting the role of the 

epigenetics change on TF activity and targeted downstream genes. Furthermore, we found that these 

TFs have direct and indirects interactions. Indirect, because having co-downstream targets genes, and 

direct because regulating each other’s. These interactions suggesting a common transcriptional 

program. Indeed, as exposed before, these TFs are all known to negatively regulate proliferation or 

differentiation, thus promoting HSC quiescence577,586–589 . These evidence were confirmed in our data 

because their downstream genes are enriched for markers of HSC quiescence as well as for biological 

process regulating differentiation, proliferation, and response to stimulation.    

Using single-cell multimodal (ATAC+ gene expression) data, we further confirm putative influence 

of EGR1 and KLF2, but not KLF4 on these downstream genes as well as their role in regulating HSC 

stimulation/activation. We further test the relevance of this regulatory network using gene silencing 
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experiments targeting KLF2. We found that the KLF2 knock-down was able to reduce expression of 

genes associated to the KLF2 regulon, but also to reduce HSC/MPP proportion further validating the 

KLF2 regulatory network and role in regulating differentiation of HSC. Taken together, we observed 

that HSCs exposed to fetal overgrowth have specific epigenetics alteration associated with a 

transcriptional downregulation of genes under the control of TFs, mostly EGR1 and KLF2, known to 

regulate differentiation and proliferation of HSCs. These results further suggest epigenetics 

programming of transcriptional activity in LGA, and consequences on HSC cell fates.   

Interestingly, EGR1 was recently found as a key actor in shaping the brain DNA methylome by 

recruiting the DNA demethylase TET1 to regulate activation of downstream genes in response to life 

experience590. In our study, we observed that in LGA, EGR1 appears downregulated, with a decrease 

activity on downstream genes, while its putative binding regions are enriched for DNA 

hypermethylation. In light of its role in regulating DNA methylation, these results suggest then a direct 

link between EGR1 activity and the remodeling of DNA methylation observed in LGA. 

Several evidence in our data show that the LGA response to stimulation/stresses is altered. The 

genes or regulons differentially expressed in LGA are strongly enriched for genes of the immediate 

response to external stimuli / stress. Notably, EGR1, SOCS3, JUNB, JUN, FOSB, DUSP2, IER2, and IER5 

which are downregulated in LGA compared to control HSC, and known to regulate response to stress 

or stimulation taking part or the immediate early response578. The immediate early response genes 

(IEGs) are genes able to rapidly be transcribed, within minutes, following a stimulation. Our scRNA 

library preparation protocol require relatively long cells manipulation and incubation time on 

challenging environments (cold temperature, centrifugation...), due to sample multiplexing strategy 

(HTO) and are thus likely to trigger a cellular response through gene expression. These manipulation 

dependent gene expression was demonstrated in a previous study, aspecially for cryopreserved cells, 

as this is the case for our cells591. By processing samples with reduces cell preparation time, we 

confirmed that the HTO based cell preparation protocol triggers a cell response to stress / stimulation. 

To validate the physiologically relevance of the HTO stimulation, we characterized the HSPC response 

to physiological cytokines, notably IL-6, known to activate HSC through the JAK/STAT pathway592–594, 

and found that cytokine stimulation activates  similar regulons (JUN, FOSB, EGR1, STAT3...) that the 

the one with the HTO protocol supporting that the cellular response is physiological. Together, we 

showed that LGA functional changes are likely to represent an epigenetics programming of their 

response to stimulation/growth signaling. This observation fit with the concept that early exposure 

can have durable consequences on the ability of cells to respond to future environment as observed 

previously in others tissues like pancreas, adipose tissue, and muscle in the context of 

aging314,316,317,595,596.  
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I.3.a. Assess the impact on HSPCs plasticity 

HSC are mainly quiescent and located in the bone marrow niche. The exit of quiescence toward 

proliferation and differentiation is tightly regulated by HSC molecular response to cytokines and cell-

cell interactions597–600. Several studies have found that this balance between HSC quiescence and 

differentiation is altered in aging400. Recently, Sureshchandra et al have shown in primate that HSC and 

progenitors ability can be altered as early as in utero. Indeed, they showed that maternal high fat 

western style diet was able to alter HSPC expansion and repopulation ability while reducing lymphoid 

potential601.  

Here we found an alteration of the control of the balance between quiescence and differentiation 

in HSCs of neonates exposed to excessive fetal growth.  We found that LGA was associated with a 

decrease proportion of HSC while an increase of more differentiated cells (MPPs), as well as a 

decreased number of HSC/MPP derived colonies in LGA compared to CTRL HSPCs. These results 

support a bias toward differentiation in LGA HSPCs concordant with the epigenetics and 

transcriptomics alterations observed. RNA velocity analysis confirms this hypothesis showing that LGA 

HSCs have a bigger probability to differentiate compared to CTRL. Furthermore, rapidly processed LGA 

samples do not show significant differences with CTRL samples supporting that the LGA functional 

differences observed in HTO processed samples are an intrinsic alteration of the response to 

challenging/stimulating environment rather than a basal change. 

Altogether, these results highlight that LGA specific epigenetics and transcriptional alterations of 

genes network promoting HSC quiescence, is associated with an HSC differentiation bias within HSPCs 

compartment, suggesting an epigenetics programming of the control of HSC differentiation in LGA. 

Bokeska et al have recently demonstrated such epigenetics programming on HSC. Indeed they showed 

that HSC early exposed to inflammatory challenges have durable epigenetics alterations and a 

decrease in vivo self renewal ability602. They also showed that these environmental challenges 

accelerate the cellular and molecular aging of HSCs with lifelong defect on tissue maintenance and 

regeneration. Our results highlight also a putative long-term effect of fetal overgrowth on the 

hematopoietic system and related chronic disorders. These results also corroborate with the findings 

of Sureshchandra et al  in primates showing the role of early exposure to maternal high fat western 

style in programming hematopoiesis and related inflammatory status, with impair fetal bone marrow 

development and HSPC functions driving an hyperinflammatory phenotypes601 . These evidence in light 

of our own results further support the key role of early detrimental exposure in future HSPCs 

dysfunctions with putative consequences on ACDs susceptibilities.  
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II. BIN1 AD GENETICS RISK STUDY 

Alzeihmer’s disease (AD), responsible of 70% of dementia and affecting more than 20% of elderly 

people, is the 7th leading cause of death worldwide. While several genetics, environmental and age 

related mechanisms have been identified contributing to AD, lot of unresolved questions regarding the 

cause of its development remain, so that no efficient treatments is yet available to prevent or cure this 

disease. AD is estimated having a 70% heritability suggesting strong genetics influences. Variant E4 of 

the APOE gene was found as the main genetics risk factor of AD, but not explain every diseases onset, 

as 1 third of AD patient do not have this variant. Then, it is critical to understand others genetics 

influences as well as the role of these gene on AD development. BIN1 locus is the 2nd most associated 

genetics risk but its role in AD development remain poorly understood.  

Here we studied the role of BIN1  by deleting it in human iPSC derived cerebral organoid and 

neuronal culture models, leveraging scRNA-seq to identified in an unsupervised way the main 

influences on brain cell types. By conducting differential expression analysis between BIN1 knock out 

(KO) and wild type (WT) cells within each cell types identified we found that the transcriptional 

alterations in BIN1 KO mainly alter glutamatergic neurons and highlight pathways related to electrical 

activity, calcium related pathway, and synaptic transmission in both bi-dimensional and tridimensional 

cellular models. Comparing to scRNA-seq clinical data, we found similar transcriptional change in 

glutamatergic neurons of AD brains, suggesting similar functional alteration in AD. We then validated 

this functional alteration of neuronal electrical activity in 4-6 weeks bidimensional cultures using multi-

electrode arrays, showing reduced frequency of spikes by burst while an increase amplitude, indicating 

neuronal hyperexcitability, but also a temporal disorganization of spikes in the neural networks, 

suggesting impaired capacity of BIN1 deleted cells to generate organized patterns of electrical activity. 

Leveraging single-cell transcriptomics signature in cerebral organoid, we found that proportion of 

neurons expressing genes signature of sustained electrical activity was significantly increased in BIN1 

KO glutamatergic neurons from cerebral organoid, suggesting durable functional alterations of this 

neuronal hyperexcitability. Finally, we found that BIN1 was able to regulate the L-type voltage-gated 

calcium channel (LVGCC) Cav1.2, through direct interaction, and pharmacological inhibition of Cav1.2 

partially rescued BIN1 KO mediated spikes desynchronization. LVGCC are known to regulate 

synchronous firing and its internalization prevent neurons hyperexcitability, bringing a mechanistic 

explanation to the role of BIN1 in regulating calcium signaling related neuronal hyperexcitability and 

neural network synchronization. 
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Abstract  27 

Bridging Integrator 1 (BIN1) is the second most important Alzheimer’s disease (AD) risk 28 

gene after APOE, but its physiological roles and contribution to brain pathology are largely 29 

elusive. In this work, we tackled the short- and long-term effects of BIN1 deletion in human 30 

induced neurons (hiNs) grown in bi-dimensional cultures and in cerebral organoids. We 31 

show that BIN1 loss-of-function leads to specific transcriptional alterations in glutamatergic 32 

neurons involving mainly genes associated with calcium homeostasis, ion transport and 33 

synapse function. We also show that BIN1 regulates calcium transients and neuronal 34 

electrical activity through interaction with the L-type voltage-gated calcium channel Cav1.2 35 

and regulation of activity-dependent internalization of this channel. Treatment with the 36 

Cav1.2 antagonist nifedipine partly rescues neuronal electrical alterations in BIN1 knockout 37 

hiNs. Together, our results indicate that BIN1 misexpression impairs calcium homeostasis in 38 

glutamatergic neurons, potentially contributing to the transcriptional changes and neural 39 

network dysfunctions observed in AD.  40 
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Introduction  42 

The Bridging Integrator 1 (BIN1) is the second most associated genetic determinant 43 

with the risk of late-onset Alzheimer's disease (LOAD), after the Apolipoprotein E (APOE) 44 

gene
1–4

, and it is only since the report of its association with AD more than ten years ago 45 

that its role in brain functions started to be investigated. In the adult human brain, BIN1 is 46 

mainly expressed by oligodendrocytes, microglial cells, glutamatergic and GABAergic 47 

neurons
5–7

 and its expression is reduced in the brains of AD patients compared to healthy 48 

individuals
7–9

. How this reduced expression of BIN1 may affect AD pathogenesis remains 49 

poorly understood. 50 

Changes in BIN1 expression have been controversially associated with amyloid 51 

precursor protein (APP) processing towards the production of amyloid-beta (Aβ) peptides in 52 

cellular models
10,11

. However, we recently showed that BIN1 regulates endocytic trafficking 53 

in hiPSC-derived neurons (hiNs), without significantly affecting amyloidogenic APP 54 

processing
12

 and BIN1 underexpression does not modify amyloid pathology in an AD-like 55 

mouse model
13

. A direct interaction between TAU and BIN1 has also been reported
14,15

 56 

potentially impacting  learning and memory in a Tauopathy mouse model
16

, Tau 57 

phosphorylation and propagation in vitro
16–19

 or network hyperexcitability in rat 58 

hippocampal neurons
19

. 59 

Despite these advances, no consensus has been reached on the role of BIN1 in AD 60 

pathogenesis and even its physiological functions in human brain cells remain mostly 61 

unknown. Therefore, rather than developing an Ab/Tau-based hypothesis as in most 62 

previous reports, we decided to first develop an agnostic approach to capture a BIN1-63 

dependent molecular landscape in cerebral organoids and neural cells derived from hiPSC 64 

underexpressing this gene. 65 

 66 
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Results 68 

 69 

Transcriptional alterations in BIN1 KO hiNs highlight pathways related to electrical 70 

activity and synaptic transmission 71 

To unbiasedly study possible changes in gene expression in human neural cells in 72 

function of BIN1 expression, we generated BIN1 wild-type (WT), and knockout (KO) cerebral 73 

organoids (COs)
20,21

. After 6.5 months of culture, COs were composed of all the major neural 74 

cell types identified by the expression of MAP2, GFAP and NESTIN, and we did not observe 75 

any gross differences in size or morphology of COs between genotypes (Fig. 1A). Western 76 

blot analyses confirmed the absence of BIN1 protein in BIN1 KO COs (Fig. 1B). Using snRNA-77 

seq, we recovered the transcriptional profile of 4398 nuclei that were grouped into 7 major 78 

cell clusters based on the expression of cell type markers (Fig. 1C-D). As observed in the 79 

human brain
7
, BIN1 expression in COs was mainly detected in oligodendrocytes and 80 

glutamatergic neurons (Fig. 1D). Notably, we observed a significant reduction in the 81 

proportion of glutamatergic neurons in BIN1 KO compared to WT COs (Fig. 1E), suggesting 82 

their selective loss or reduced differentiation. Using Wilcoxon test after sctransform 83 

normalization and variance stabilization of molecular count data
22

, we detected 124, 75, 4 84 

and 1 differently expressed genes (DEGs; |log2FC| >0.25 and FDR <0.05) respectively in 85 

glutamatergic neurons, astrocytes, NPCs and oligodendrocytes, when comparing gene 86 

expression in single cell populations of BIN1 KO and WT COs (Fig. 1F; Sup. Table 1). Gene 87 

ontology (GO) term enrichment analysis for DEGs identified in BIN1 KO glutamatergic 88 

neurons revealed a significant enrichment for several terms associated with synaptic 89 

transmission, calcium binding and ion channels (Fig. 1G; Sup. Table 2). In BIN1 KO 90 

astrocytes, we found enrichment for GO terms associated with neuronal differentiation 91 

(Sup. Table 2). In addition, since BIN1 is expressed at very low level in WT COs astrocytes 92 

and we noticed several DEGs regulated by neuronal activity, such as APBA1, GRIN2B, NPAS3 93 

and RORA (Sup. Table 1)
23

, changes in astrocytes are likely secondary to neuronal 94 

modifications/dysfunctions. Accordingly, we observed 65 DEGs in glutamatergic neurons of 95 

BIN1 heterozygous (HET) compared to WT COs but only 6 DEGs in astrocytes (Sup. Fig. 1). 96 

Similar transcriptional alterations were observed in BIN1 KO hiNs generated in bi-97 

dimensional cultures (Sup. Fig. 2).  98 
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We next aimed at evaluating the cell-autonomous effect of BIN1 deletion in 99 

glutamatergic neurons and, for this purpose, we generated BIN1 WT or KO pure 100 

glutamatergic neuronal cultures by direct lineage-reprogramming of human NPCs (hNPCs) 101 

using doxycycline-inducible expression of ASCL1 (see online methods). After validation that 102 

ASCL1 expression efficiently reprogrammed hNPCs into highly pure neurons (hereafter 103 

ASCL1-hiNs; Fig. 1H),  we added exogenous human cerebral cortex astrocytes to support 104 

functional neuronal maturation and synaptic connectivity
24

. After 4 weeks of differentiation 105 

and snRNA-seq analyses (n=3114 from 2 independent culture batches), we observed that 106 

ASCL1-hiNs (~70% of all the cells; see Online Methods for a full description of the cellular 107 

populations) were composed of glutamatergic neurons (~92%) with a small proportion of 108 

GABAergic neurons (~2%) or of cells co-expressing low levels of markers of both neuronal 109 

subtypes (~6%). We detected 675 DEGs (|log2FC| >0.25 and FDR <0.05) in BIN1 KO 110 

compared to WT glutamatergic neurons, and only 1 DEG in GABAergic neurons (Fig. 1K; Sup. 111 

Table 3). As observed in COs (Fig. 1G) and spontaneously differentiated hiNs (Sup. Fig. 2), 112 

GO term enrichment analysis revealed a significant enrichment for terms associated with 113 

synaptic transmission, ion channel activity and calcium signaling pathways (Fig. 1L; Sup. 114 

Table 4). Noteworthy, exogenously added human astrocytes co-cultured with BIN1 WT and 115 

KO hiNs showed a low number of DEGs (25 in Astro-I and 18 in Astro-II; Sup. Table 3), likely 116 

again reflecting an astrocyte reaction to primary changes in hiNs in response to BIN1 117 

deletion.  118 

Altogether, results obtained from 2D and 3D models indicate that BIN1 loss-of-119 

function leads to specific transcriptional changes associated with functional properties of 120 

glutamatergic neurons. 121 

 122 

Molecular alterations in BIN1 KO organoids and hiNs resemble those observed in the 123 

brains of AD patients 124 

We then sought to evaluate whether molecular alterations in our neural models may 125 

recapitulate some of those observed in the brain of AD cases. For this purpose, we used a 126 

publicly available snRNA-seq dataset generated from the entorhinal cortex (EC) and superior 127 

frontal gyrus (SFG) of AD patients at different Braak stages
9
. We first observed a progressive 128 

and significant decrease in BIN1 mRNA levels in glutamatergic neurons (Fig. 2A), suggesting 129 

that reduced BIN1 expression in this cell type may be a common feature occurring in the AD 130 
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pathology progression. We then compared DEGs identified in BIN1 KO glutamatergic 131 

neurons (either from COs or ASCL1-hiNs) with those identified in the same cell subtype of 132 

AD brains (Sup. Table 5). Remarkably, DEGs identified in BIN1 KO glutamatergic neurons 133 

(either from COs or ASCL1-hiNs) showed a statistically significant overlap with DEGs 134 

detected in this cell population in AD brains at different Braak stages (Fig. 2B). In astrocytes, 135 

however, a similar significant overlap could only be observed between COs and AD brains 136 

(Fig. 2B). GO analysis based on DEG overlap between BIN1 KO ASCL1-hiNs and AD brain 137 

glutamatergic neurons indicated significant enrichment for pathways associated with 138 

glutamate receptor activity and gated channel activity (Fig. 2C). Similarly, DEG overlap 139 

between BIN1 KO COs and AD brain glutamatergic neurons was significantly enriched for 140 

genes associated with glutamate receptor activity, gated channel activity and calcium ion 141 

binding (Fig. 2D; Sup. Table 6). No significant enrichment was observed for DEG overlap 142 

between BIN1 KO COs and AD brain astrocytes (data not shown). Altogether, these 143 

observations suggest that BIN1 loss-of-function is sufficient to elicit gene expression 144 

alterations in glutamatergic neurons in part similar of those observed in AD brains and 145 

associated with functional properties of glutamatergic neurons. 146 

We finally investigated if AD-like biochemical modifications may occur in our different 147 

models by measuring the levels of phosphorylated TAU, APP, APP CTF-β and Aβ peptides. 148 

We detected an increase in the intracellular levels of phospho-TAU (Ser202, Thr205) in BIN1 149 

KO compared to WT cultures both in 2D and 3D cultures (Fig. 2E-H). In agreement with our 150 

previous observations in cerebral organoids (Lambert et al., 2022), we did not detect any 151 

significant differences neither in the concentrations of soluble Aβ(1-x) or Aβ(1-42), nor in 152 

the intracellular levels of full-length APP and APP CTF-β in BIN1 KO compared to WT hiN 153 

cultures in 2D (Sup. Fig. 3). Altogether, these results indicate that BIN1 underexpression may 154 

be sufficient to induce AD-related Tau hyperphosphorylation in glutamatergic neurons.  155 

 156 

Number of synaptic contacts is decreased in BIN KO organoids  157 

Since synapse loss is also an early marker of AD development, we then assessed 158 

whether BIN1 deletion may affect synaptic connectivity in our different models. Using 159 

immunohistochemistry experiments, we did not find any significant differences in the 160 

number of putative synaptic contacts (% SYP assigned) in BIN1 KO compared to WT ASCL1-161 

hiNs, both at 4 and 6 weeks of differentiation (Fig. 3A-D). We also studied glutamatergic 162 
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synapses functionally using real-time imaging of ASCL1-hiNs expressing glutamate sensor 163 

iGLUSnFr
25

. Like our observations based on immunocytochemistry, we did not detect 164 

differences neither in the number of glutamatergic synapses (active spots) nor in the 165 

frequency of events (change in fluorescence levels in active spots) in BIN1 KO compared to 166 

WT ASCL1-hiNs (Sup. Fig. 4; Sup. Movies 1 and 2). In contrast, BIN1 KO COs showed a 167 

significant reduction in the number of synaptic contacts (Fig. 3H), mainly due to a reduction 168 

in the number of post-synaptic spots expressing HOMER1 (Fig. 3E-F).  Thus, our data 169 

indicate that long term BIN1 underexpression may affect synaptic connectivity, even if not 170 

detectable at short term in 2D culture. 171 

 172 

BIN1 null deletion modifies electrical activity pattern in ASCL1-hiNs 173 

Although we cannot exclude that the latter observations may be linked to a difference 174 

between 2D and 3D cultures per se, we postulated that the decrease in synaptic contacts 175 

after long-term BIN1 deletion may be a consequence of synapse down-scaling resulting from 176 

chronically increased neuronal excitability due to deregulation of functional properties of 177 

glutamatergic neurons
41,42

.  To directly address this possibility, we used multi-electrode 178 

arrays (MEA) to record and quantify multi-unit activity (MUA) in ASCL1-hiNs cultured in a 179 

microfluidic device, which guides neurites into microchannels that are positioned over 180 

recording electrodes (Sup. Fig. 5). As observed in dissociated cultures of cortical cells
26

, 2D 181 

cultures of ASCL1-hiNs cells exhibited a diverse range of spontaneous activity patterns, 182 

including regular discharges, population bursts and period activity (Sup. Fig. 4). In this 183 

respect, we found a conspicuous change in the temporal organization of MUA after BIN1 184 

deletion, mainly characterized by an increased number of spike bursts at 4 weeks (Sup. Fig. 185 

4). These alterations may result from compensatory adjustments in neuronal connectivity, 186 

intrinsic membrane properties or both. To disentangle these possibilities, we used 187 

waveform-based spike sorting to examine the functional consequences of BIN1 deletion at 188 

the single neuronal level (Fig. 4). We identified a similar number of single units per recording 189 

electrode between genotypes (WT: 4.92±2.34; KO: 5.27±2.45), indicating that BIN1 deletion 190 

does not impair the expression neither the density of active units within culture 191 

microchannels. However, we observed reduced single-unit activity (SUA) frequency (Fig. 4B) 192 

and increased SUA amplitude (Fig. 4C) in BIN1 KO compared to WT ASCL1-hiNs. 193 

Interestingly, we could not detect significant changes in the number of bursts per neuron 194 
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(WT: 11.01±6.71; KO: 10.36±8.59), although the burst duration and the number of spikes 195 

within a burst were significantly decreased in BIN1 KO compared to WT ASCL1-hiNs (Fig. 4D-196 

E), demonstrating the pertinence of performing spike sorting in MEA data. With this 197 

approach, we demonstrate the temporal disorganization observed in BIN1 KO hiNs networks 198 

(Fig. 4F) by computing the array-wide spike detection rate (ASDR), which reveals the 199 

strength of the synchronized population activity, and the autocorrelograms of SUAs, which 200 

allows the apprehension of synchronized periodicity. Both methods revealed striking 201 

modifications in the temporal organization of SUAs in BIN1 KO compared to WT ASCL1-hiNs 202 

(Fig. 4G-I). While most spikes of BIN1 WT neurons occurred at periodic intervals of about 8-203 

10 s, the spikes of BIN1 KO neurons were randomly distributed, suggesting that BIN1 204 

deletion in neurons impairs the capacity of these cells to generate organized patterns of 205 

electrical activity. Accordingly, the percentage of spikes occurring outside of bursts was 206 

significantly higher in BIN1 KO than in WT ASCL1-hiNs (Fig. 4J).  207 

Acute MEA recordings in 5-month-old COs also revealed a significant increase in spike 208 

frequency in BIN1 KO compared to WT COs (Fig. 5A-B), but these experiments represent a 209 

very narrow time shot of COs differentiation. Therefore, to evaluate chronic alterations in 210 

neuronal electrical activity in this system, we developed an original approach based on the 211 

expression of activity-related genes (ARGs)
27

. While neurons stimulated with brief patterns 212 

of electrical activity transcribe rapid primary response genes (rPRGs) or early response 213 

genes (ERGs), those stimulated with sustained patterns of electrical activity express delayed 214 

primary response genes (dPRGs), secondary response genes (SRGs) and late response genes 215 

(LRGs) (Fig. 5C)
28,29

. Using Cell-ID
30

, we analyzed the enrichment for these gene signatures 216 

(Sup. Table 7) in our COs at single-cell resolution. As expected, we observed that ARG 217 

signatures were predominantly enriched in neurons (Fig. 5D). Quantification of the 218 

proportion of neurons significantly enriched for specific signatures (padj<0.05) revealed a 219 

significantly higher proportion of glutamatergic neurons enriched for dPRGs, SRGs and LRGs 220 

in BIN1 KO compared to WT COs (Fig. 5E). Enrichments for SRGs and LRGs were specific for 221 

this cell type and could not be observed either in GABAergic neurons (Fig. 5E) or in BIN1 HET 222 

glutamatergic neurons (Sup. Fig. 6). Thus, BIN1 deletion leads to alterations in neuronal 223 

electrical activity before observable changes in synaptic connectivity, suggesting that 224 

functional changes in BIN1 KO ASCL1-hiNs are likely a consequence of altered cell-intrinsic 225 

properties.  226 
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 227 

BIN1 regulates neuronal Ca
2+

 dynamics through LVGCCs  228 

Since we found significant enrichment for several terms associated with calcium 229 

binding and ion channels, we postulated that actors of these pathways may be responsible 230 

for such altered cell-intrinsic properties. To probe whether Ca
2+

 dynamics was altered in 231 

BIN1 KO ASCL1-hiNs, we performed calcium imaging in 4-week-old cultures (Sup. Movies 3 232 

and 4). We observed a significant increase in the frequency of Ca
2+

 transients in BIN1 KO 233 

compared to WT ASCL1-hiNs, associated with changes in fluorescence dynamics indicative 234 

of longer times to reach the maximum intracellular Ca
2+ 

levels and to recover baseline levels 235 

(Fig. 6A-F).  236 

LVGCCs are key regulators of Ca
2+

 transients in neurons, which play a fundamental role 237 

in neuronal firing and gene transcription regulation
31

. We thus sought to determine if BIN1 238 

may interact and regulate LVGCC expression in hiNs, as previously described for 239 

cardiomyocytes
32

. First, we performed proximity ligation assay (PLA) to probe a possible 240 

interaction between BIN1 and Cav1.2 or Cav1.3, the two LVGCCs expressed in ASCL1-hiNs 241 

(Sup. Fig. 7). We observed a widespread BIN1-Cav1.2 PLA signal (Fig. 6G) and, to a lesser 242 

extent, a BIN1-Cav1.3 one in neurons (Sup. Fig. 7). Next, we quantified neuronal LVGCC 243 

protein level and observed an increase in total Cav1.2 levels in BIN1 KO compared to WT 244 

ASCL1-hiNs (Fig. 6H-I). Protein levels of neither Cav1.3, nor the members of the Cav2 family 245 

(Cav2.1, Cav2.2 and Cav2.3) were increased in the same cultures (Sup. Fig. 7), suggesting a 246 

specific regulation of Cav1.2 expression by BIN1.  247 

Notably, LVGCCs are key regulators of the synchronous firing pattern in neurons
33

 and 248 

one of the homeostatic mechanisms protecting neurons from hyperexcitability involves 249 

activity-dependent internalization of those channels
34

. Thus, to evaluate whether BIN1 250 

deletion may impair this mechanism, we stimulated ASCL-hiNs with KCl 65nM for 30 min 251 

and collected total and endosomal proteins for analysis. We confirmed an increase in the 252 

global level of Cav1.2 in BIN1 KO ASCL1-hiNs that was independent of KCl treatment (Fig. 6J). 253 

However, Cav1.2 expression in the endosomal fraction was increased by 50% after KCl 254 

treatment in BIN1 WT, whereas this increase was only of 10% in BIN1 KO ASCL1-hiNs (Fig. 255 

6K). This effect was specific for Cav1.2 since both early endosome antigen 1 (EEA1) and Cav1.3 256 

expression increased in both BIN1 WT and KO ASCL1-hiNs at similar levels after KCl 257 

treatment (Fig. 6K).  258 
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These last observations prompted us to investigate whether the network dysfunctions 259 

observed in BIN1 KO ASCL1-hiNs may be related to the increased Cav1.2 protein levels. For 260 

this purpose, we treated these cells with nifedipine, a specific antagonist of Cav1.2 at a 261 

physiologically relevant concentration (50 nM) for 2 weeks.  We observed a partial recovery 262 

of the oscillatory pattern of neuronal electrical activity observed in WT cells (Fig. 6L). 263 

Interestingly, the percentage of spikes outside bursts was not affected by nifedipine 264 

treatment in BIN1 WT, but significantly decreased in BIN1 KO ASCL-hiNs (Fig. 6M), indicating 265 

a partial recovery of burst organization. To note, no difference in firing rates was observed 266 

whatever the models and conditions (Fig. 6N). Altogether, these data support the view that 267 

BIN1 contributes to the regulation of electrical activity through the regulation of Cav1.2 268 

expression/localization in human neurons.   269 

 270 

  271 
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Discussion  272 

 273 

In this work, we show that the AD genetic risk factor BIN1, plays a critical role in the 274 

regulation of neuronal firing homeostasis in glutamatergic neurons. Complete deletion of 275 

BIN1 gene in these neurons is sufficient to alter the expression of the LVGCC Cav1.2, leading 276 

to altered calcium homeostasis and neural network dysfunctions in human neurons in vitro. 277 

These functional changes are correlated with changes in the expression of genes involved in 278 

synaptic transmission and ion transport across the membrane, as well as increased Tau 279 

phosphorylation. In long-term neuronal cultures using COs, we confirm that BIN1 loss-of-280 

function affects electrical activity and leads to synapse loss, transcriptional and biochemical 281 

alterations resembling those observed in the AD brain. These results suggest that 282 

misexpression of BIN1 in glutamatergic neurons may contribute to early stages of AD 283 

pathophysiology by dysregulating neuronal firing homeostasis through LVGCCs. 284 

Neuronal network dysfunctions are observed in AD patients at early stages of the 285 

disease and precede or coincide with cognitive decline 
35–37

. Under physiological conditions, 286 

neuronal networks can maintain optimal output through regulation of synaptic and cell-287 

intrinsic mechanisms
38

. Our results suggest that normal levels of BIN1 expression in 288 

glutamatergic neurons are fundamental to regulate neuronal firing rate homeostasis. 289 

Indeed, BIN1 deletion in hiNs is sufficient to dysregulate network oscillations even without 290 

impacting the number of functional synaptic contacts, suggesting that the 291 

desynchronization observed in BIN1 KO hiNs circuits are a consequence of miscarried 292 

homeostatic controls of neuronal activity.  293 

One key mechanism controlling neuronal spiking activity is the regulation of Ca
2+

 294 

homeostasis 
31,33,39

. Increased neuronal electrical activity induces the turnover of LVGCCs 295 

from the plasma membrane through endocytosis
34

 and regulates the transcription of genes 296 

encoding for calcium-binding proteins and calcium-mediated signaling
40

, mechanisms 297 

aiming to restore local Ca
2+

 signaling cascades and protect cells against aberrant Ca
2+

 influx. 298 

We show that BIN1 interacts with Cav1.2 in hiNs, similar to previous findings in cardiac T 299 

tubules
32

 and in mouse hippocampal neurons
19

 and provide evidence supporting a novel 300 

role for BIN1 in the regulation of activity-dependent internalization of Cav1.2 in human 301 

neurons, thus linking BIN1 to firing homeostasis in human neurons through that LTVGCC.  302 
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Loss of Ca
2+

 homeostasis is an important feature of many neurological diseases and 303 

has been extensively described in AD
41,42

. Interestingly, DEGs identified in glutamatergic 304 

neurons in our different cell culture models are enriched for calcium-related biological 305 

processes. This is also observed for DEGs detected both in glutamatergic neurons of BIN1 KO 306 

COs and in AD brains. Thus, reduced expression of BIN1 in glutamatergic neurons may 307 

contribute to the breakdown of Ca
2+

 homeostasis in the AD brain, potentially contributing to 308 

neuronal circuit dysfunctions. Consistent with this hypothesis, we have previously shown a 309 

significant reduction in the expression of the transcript encoding for the neuron-specific 310 

BIN1 isoform 1 in bulk RNA-sequencing data from a large number of AD patients
7
 and we 311 

show in this work that BIN1 expression is reduced in glutamatergic neurons of AD brains at 312 

late Braak stages.  313 

Altogether, our results suggest that BIN1 misexpression in glutamatergic neurons may 314 

primarily undermine Ca
2+

 homeostasis, leading to changes in neuronal electrical activity. In a 315 

later stage, gene expression and circuit-level alterations such as synapse loss would occur, 316 

likely because of altered neuronal electrical activity. A corollary to this model would be that 317 

early treatments aiming to restore Ca
2+

 homeostasis and neuronal electrical activity may 318 

have a beneficial impact in AD. Interestingly, a Mendelian randomization and a retrospective 319 

population-based cohort study found evidence suggesting that Ca
2+

 channel blockers are 320 

associated with a reduced risk of AD
43,44

. In the future, it would be interesting to study the 321 

impact of these drugs for AD onset/progress as a function of genetic variants in the BIN1 322 

locus.  323 

  324 
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Figure legends  465 

Figure 1: Transcriptional changes in BIN1 KO hiNs. (A) Immunohistochemistry for GFAP 466 

(red), MAP2 (green) and DAPI (blue) in 6.5-month-old BIN1 WT and KO COs. (B) Western 467 

blots showing the isoforms of BIN1 detected in WT and the absence of BIN protein in KO 468 

COs. (C) UMAP representation of the different cell subtypes in COs identified using snRNA-469 

seq. (D) Dot plot representing the expression for BIN1 and key markers used to annotate cell 470 

subtypes. (E) Proportion of cell subpopulations in both genotypes (****p<0.0001; Chi-471 

squared test). (F) Volcano plots representing DEGs comparing KO vs WT in astrocytes and 472 

glutamatergic neurons. DEGs with adjusted p-value <0.05 and |log2FC| >0.25 are shown in 473 

red. Gene labels are shown for top 10 genes in terms of log2FoldChange and p-value. (G)  474 

Functional enrichment analysis of DEGs identified in glutamatergic neurons. Bar plots 475 

representing the top 10 enriched gene ontology (GO) terms in biological processes (BP), 476 

cellular components (CC) and molecular function (MF) at padj<0.01. (H) Images showing BIN1 477 

WT and KO hiNs 7 days after the beginning of doxycycline treatment immunolabeled for 478 

neuronal markers MAP2 and TUBB3 and astrocyte marker GFAP and stained with DAPI. (I) 479 

UMAP representation of the different cell subtypes identified in ASCL1-hiNs cultures using 480 

snRNA-seq. (J) Dot plot representing expression of key markers used to annotate cell 481 

subtypes. (K) Volcano plot representing DEGs comparing BIN1 KO vs WT glutamatergic 482 

neurons. DEGs with adjusted p-value <0.05 and |log2FC| >0.25 are shown in red. Gene 483 

labels are shown for calcium- and synapse-related genes. (L) Functional enrichment analysis 484 

of DEGs identified in glutamatergic neurons. Bar plots representing the top 10 enriched GO 485 

terms in each category at padj<0.01.  486 

 487 

Figure 2: Similar molecular alterations in BIN1 KO hiNs and glutamatergic neurons of 488 

the AD brain. (A) Box plot representing BIN1 mRNA in expression through different Braak 489 

stages in entorhinal cortex (EC) and superior frontal gyrus (SFG) (***padj<0.001; Wilcoxon 490 

test). (B) Dot plot representing the overlap between DEGs identified in glutamatergic 491 

neurons of the AD brain and BIN1 KO ASCL1-hiN cultures (left) or BIN1 KO COs (right). (C-D) 492 

Network representation of enriched GO terms in overlapping DEGs between AD brains and 493 

glutamatergic neurons in culture. Enriched GO terms were identified using over-494 

representation test. (E) Western blot for total TAU protein C-terminal (TAU-C), 495 

phosphorylated (p)-TAU at Ser202, Thr205 (AT8) and β-ACTIN in 4-week-old ASCL1-hiNs 496 
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cultures. (F) Quantification of TAU-C/β-ACTIN and p-TAU/TAU-C levels in BIN1 KO ASCL1-497 

hiNs normalized to WT (*p=0.0262; Mann-Whitney test). (G) Western blot for total TAU 498 

protein C-terminal (TAU-C), phosphorylated (p)-TAU at Ser202, Thr205 (AT8) and β-ACTIN in 499 

6.5month-old COs. (H) Quantification of TAU-C/β-ACTIN and p-TAU-TAU-C levels normalized 500 

to WT (*p=0.0357; #p=0.0714; Mann-Whitney test). 501 

 502 

Figure 3: Similar synaptic density in BIN1 WT and KO ASCL1-hiNs. (A-B) 503 

Immunocytochemistry using the astrocyte marker GFAP, neuronal marker MAP2, pre-504 

synaptic marker SYP and post-synaptic marker HOMER1 in BIN1 WT ASCL1-hiNs after 4 505 

weeks of differentiation in a three-chamber microfluidic device. Scale bar = 200 μm. 506 

Rectangular box in A is magnified in B, allowing the identification of putative synaptic 507 

contacts (B’). (C-D) Fraction of SYP spots assigned by HOMER1 spots in MAP2 processes at 4 508 

and 6 weeks ASCL1-hiNs cultures (n= 8 independent devices for each genotype). (E) 509 

Immunohistochemistry for HOMER1 (red), SYP (green) in 6.5-month-old BIN1 WT and KO 510 

COs. (F) Quantifications of the number of SYP and HOMER1 spots, and the percentage of 511 

SYP assigned by HOMER1 spots in BIN1 WT and KO COs (**p=0.0076; ***p=0.0002; Mann-512 

Whitney test; n=3 COs per genotype).  513 

 514 

Figure 4: Disorganization of neuronal activity in BIN1 KO ASCL1-hiNs. (A) Raster plots 515 

showing the decomposition of multi-unity activity (MUA, black lines) into single-unit activity 516 

(SUA, colored lines) using spike waveform clustering. (B-E) Quantification of single-neuron 517 

firing rate (B; **p=0.0034), spike amplitude (C; *p=0.0106), burst duration (D; 518 

****p<0.0001) and number of spikes per burst (E; ****p<0.0001) at 4 weeks. Mann-519 

Whitney test; n= 5 independent experiments; WT: 376 neurons; KO: 416 neurons). (F) Raster 520 

plots showing SUA recorded from 5 different electrodes of BIN1 WT (left) or KO (right) ASCL-521 

hiNs cultures after 4 weeks of differentiation. (G) Array-wide spike detection rate (ASDR) 522 

plots based on SUA recorded in BIN1 WT and KO ASCL1-hiNs cultures. Each line represents 523 

one independent culture batch. (H-I) Normalized autocorrelogram heatmap (H, each line 524 

refers to one SUA) and averaged correlation (I) for all SUAs recorded in 5 independent BIN1 525 

WT and KO ASCL1-hiNs cultures. (J) Percentage of spikes outside of bursts (*p=0.0417, 526 

Mann-Whitney test).  527 

 528 
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Figure 5: Altered electrical activity in BIN1 KO COs. (A) Representative raster plots 529 

showing detected spikes in 5-month-old BIN1 WT and KO COs recorded in a multi-well MEA 530 

device. (B) Spike frequency in Hz (**p=0.0068; Mann-Whitney test; n=4 WT and 3 KO COs). 531 

(C) Scheme indicating the different sets of ARGs regulated by brief and sustained patterns of 532 

electrical activity
28,29

. rPRGs: rapid primary response genes; dPRGs: delayed primary 533 

response genes; SRGs: secondary response genes; ERGs: early response genes; LRGs: late 534 

response genes; Exc – glutamatergic neurons; Inh – GABAergic neurons. (D) Feature plots 535 

showing the enrichment score of single cells for ARG signatures. Enrichment scores 536 

correspond to the –log10(padj) of the Cell-ID-based enrichment test. (E) Proportions of 537 

glutamatergic (left) and GABAergic neurons (right) enriched for the different ARG signatures 538 

according to genotype (*p<0.05; ***p<0.001; Chi-squared test).  539 

 540 

Figure 6: Altered frequency of calcium transients in BIN1 KO ASCL1-hiNs. (A) Snapshot 541 

of a 4-week-old ASCL1-hiNs culture labeled with Oregon green BAPTA. (B) Representative 542 

plot of fluorescence change over time in 1000 frames. (C) Representative traces showing the 543 

fluorescence changes in BIN1 WT and KO ASCL1-hiNs. Red dashed lines indicate the time to 544 

reach the fluorescence maximal intensity (raising time - t1) and to return to baseline 545 

(recovery time - t2). (D) Quantification of calcium transients in BIN1 WT and KO ASCL1-hiNs 546 

(****p<0.0001; Mann-Whitney test; n= 3 independent cultures for each genotype; number 547 

of active cells per condition: 754 (WT), 1006 (KO)). (E-F) Quantification of rising time (t1) and 548 

recovery time (t2) for calcium transients (**p=0.0022; ****p<0.0001; Mann-Whitney test). 549 

(G) Images showing PLA spots using anti-BIN1 and anti-Cav1.2 antibodies in 4-week-old BIN1 550 

WT and KO hiNs. Cells were also immunolabeled for the neuronal marker MAP2 (green), the 551 

astrocyte marker GFAP (white), and stained with DAPI (blue). (H) Western blot for Cav1.2 552 

(without and with blocking peptide) and β-ACTIN in 4-week-old ASCL1-hiNs cultures. (I) 553 

Quantification of Cav1.2/β-ACTIN levels in BIN1 WT and KO ASCL1-hiNs cultures (
&

p=0.0585; 554 

#
p=0.0217; *p=0.0286; Unpaired t-test). (J) Western blot for Cav1.2 and β-ACTIN in the total 555 

protein extracts from 4-week-old ASCL1-hiNs treated with KCl (+) or vehicle (-). Plot shows 556 

the quantification of Cav1.2 normalized by β-ACTIN. (K) Western blot for Cav1.2, Cav1.3 and 557 

EEA1 in the endosomal protein extracts from 4-week-old ASCL1-hiNs treated with KCl (+) or 558 

vehicle (-). Plot shows the optical density of these proteins (****p<0.0001; Chi-square test). 559 

(L) Auto-correlograms of 4-week-old BIN1 WT and KO hiNs treated or not with 50 nM 560 
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Nifedipine for 2 weeks. (M) Percentage of spikes outside of bursts (WT vs WT+NIF: 561 

**padj=0.0034; WT vs KO: *padj=0.0124; Dunn’s multiple comparison test). (N) Average firing 562 

rates.  563 

 564 

Supplementary data 565 

Sup. Figure 1: Figure 1: Transcriptional changes in BIN1 HET COs. (A) 566 

Immunohistochemistry for GFAP (red), MAP2 (green) and DAPI (blue) in 6.5-month-old BIN1 567 

WT and HET COs. (B) Western blots showing the decrease in BIN1 expression in HET COs. (C) 568 

UMAP representation of the different cell subtypes in COs identified using snRNA-seq. (D) 569 

Cell proportions in each subpopulation in WT and HET COs. (E) Volcano plot representing 570 

DEG comparing HET vs WT in astrocytes and glutamatergic neurons. DEGs with adjusted p-571 

value <0.05 and |log2FC| >0.25 are shown in red. Gene labels are shown for top 10 genes in 572 

terms of log2FoldChange and p-value. (F) Functional enrichment analysis of DEGs identified 573 

in BIN1 HET glutamatergic neurons. Bar plots representing the top 10 enriched gene 574 

ontology (GO) terms in biological processes (BP), cellular components (CC) and molecular 575 

function (MF) at padj<0.01. (G) Venn diagram showing the overlap between DEGs identified 576 

in BIN1 HET and KO glutamatergic neurons. (H) Bar plots representing the top 10 enriched 577 

GO:BP for common DEGs. (I) Immunohistochemistry for HOMER1 (red), synaptophysin (SYP, 578 

green) in 6.5-month-old BIN1 WT and HET COs. (J) Quantification of the percentage of SYP 579 

assigned by HOMER1 spots in BIN1 WT and HET COs (***p=0.0002; Mann-Whitney test; n=3 580 

COs per genotype). 581 

 582 

Sup. Figure 2: Transcriptional changes in spontaneously differentiated BIN1 KO hiNPCs. 583 

(A) UMAP representation of the different cell subtypes identified in 2D hiNPC cultures after 584 

6 weeks of differentiation using snRNA-seq. (B) Proportion of cell subpopulations in both 585 

genotypes. (C) Dot plot representing expression of key markers used to annotate cell 586 

subtypes. (D) Volcano plot representing DEGs comparing BIN1 KO vs WT glutamatergic 587 

neurons. DEGs with adjusted p-value <0.05 and |log2FC| >0.25 are shown in red. (E) 588 

Functional enrichment analysis of DEGs identified in glutamatergic neurons. Bar plots 589 

representing the top 10 enriched GO terms in each category at padj<0.01.  590 

 591 
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Sup. Figure 3: Normal APP processing in BIN1 KO ASCL1-hiNs. (A) Western blots 592 

showing the expression of APP full-length, CTF-ß and ß-ACTIN at 4 weeks. (B) Quantification 593 

of the ratios APP/ß-ACTIN, CTF-ß/ß-ACTIN and CTF-ß/APP (n = 5 for each genotype). (C) 594 

Quantification of soluble Aß1-x, Aß1-42 and the ratio Aß1-42/ Aß1-x in ASCL1-hiNs cultures at 3 595 

and 4 weeks.  596 

 597 

Sup. Figure 4: Normal glutamatergic transmission in BIN1 KO ASCL1-hiNs. Box plots 598 

show the number of active spots per neuron and number of events detected by time-lapse 599 

video-microscopy in 4- or 6-week-old ASCL1-hiNs cultures transduced with the glutamate 600 

sensor iGLUSnFr (4 weeks: n= 378 BIN1 WT and 266 BIN1 KO ASCL1-hiNs; 6 weeks: n= 685 601 

BIN1 WT and 629 BIN1 KO ASCL1-hiNs).  602 

 603 

Sup. Figure 5: Increased spike burst frequency in BIN1 KO ASCL-hiNs. (A) Bright-field 604 

image of ASCL1-hiNs cultures in microfluidic/MEA devices showing the cell chamber and 605 

micro channels. Neuron somata are mainly restricted to the cell chamber, whereas neuronal 606 

processes occupy microchannels. (B) Representative raster plots showing detected spikes in 607 

electrophysiological recordings of electrodes underneath the cell chamber and the micro 608 

channels, showing the higher sensitivity of the latter. (C) Raster plots showing MUA 609 

recorded for 1 minute in BIN1 WT and KO ASCL1-hiNs after 4 weeks of differentiation. Each 610 

line represents one electrode localized side-by-side in our microfluidic/MEA array (as in 611 

panel A). (D-E) Quantification of the number of detected spikes at different time points 612 

(*padj=0.0141; ***padj=0.0006; Two-way ANOVA followed by Tukey’s multiple-comparison 613 

test; n= 5 for each genotype). (F) Quantification of the number of spike bursts at different 614 

time points (**p=0.004; #p=0.0888; Mann-Whitney test).  615 

 616 

Sup. Figure 6: Subtle increase in electrical activity in BIN1 HET COs. (A) Representative 617 

raster plots showing detected spikes in 5-month-old BIN1 WT and HET COs recorded in a 618 

multi-well MEA device. (B) Spike frequency in Hz (n=4 WT and 3 HET COs). (C) Proportions of 619 

glutamatergic neurons enriched for ARG signatures according to genotype (***p<0.001; Chi-620 

squared test).  621 

 622 
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Sup. Figure 7: Expression of voltage-gated calcium channels in ASCL1-hiNs. (A) Violin 623 

plots showing the mRNA levels of Cav1 and Cav2 members of the voltage-gated calcium 624 

channel families L-type, P/Q-type, N-type and R-type detected in ASCL1 hiNs. (B) Images 625 

showing PLA spots using anti-BIN1 and anti-Cav1.3 antibodies in 4-week-old BIN1 WT hiNs. 626 

Cells were also immunolabeled for the neuronal marker MAP2 (green), the astrocyte marker 627 

GFAP (white), and stained with DAPI (blue). (C) Western blots showing the expression of 628 

Cav1.3, Cav2.1, Cav2.2 and Cav2.3 in 4-week-old ASCL1h hiNs. (D) Quantification of protein 629 

expression.  630 

Sup. Movies 1 and 2: Time-series of 1000 frames taken from BIN1 WT and KO ASCL1-631 

hiNs transduced with iGLUSnFr after 2 weeks of differentiation and imaged 2 weeks later. 632 

Videos are played at 100 fps. 633 

 634 

Sup. Movies 3 and 4: Time-series of 1000 frames taken from BIN1 WT and KO ASCL1-635 

hiNs after 4 weeks of differentiation and labeled with Oregon Green BAPTA and imaged. 636 

Videos are played at 100 frames per second (fps).  637 

 638 

Sup. Table 1: DEGs identified in different cell types/subtypes of COs. 639 

 640 

Sup. Table 2: GO terms enriched for DEGs identified in different cell types/subtypes of 641 

COs. 642 

 643 

Sup. Table 3: DEGs identified in different cell types/subtypes of ASCL1-hiNs cultures. 644 

 645 

Sup. Table 4: GO terms enriched for DEGs identified in different cell types/subtypes of 646 

ASCL1-hiNs cultures. 647 

 648 

Sup. Table 5: DEGs identified in different cell types/subtypes of the AD brain. 649 

 650 

Sup. Table 6: GO terms enriched for DEGs commonly identified in BIN1 HET or KO cells 651 

and the AD brain.   652 

 653 

Sup. Table 7: List of ARGs used for Multiple Correspondence Analysis (MCA) in Cell-ID. 654 
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 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

Online methods  664 

  665 

Maintenance of cells and generation of hiNPCs and hiNs  666 

hiPSCs modified for BIN1 in exon3 by CRISPR/Cas9 technology were sourced from 667 

Applied StemCell Inc. CA, USA. In addition to the BIN1 WT and KO hiPSCS, heterozygous 668 

(HET) iPSCS, harbouring a 1 bp insertion in one allele were also sourced Applied Stem Cells 669 

Inc. CA, USA.The parental cell line used for derivation of the cells was ASE 9109. The 670 

maintenance of these cells and the generation of hiNS, hiAs, and COs thereof, have been 671 

detailed in the publication by Lambert et al., 2022. All hiPSCs and their neuronal and glial 672 

cell derivatives including COs were maintained in media from Stemcell Technologies, 673 

Vancouver, Canada. Maintenance of cell cultures and COs were done following 674 

manufacturer’s protocols which have been elucidated on the webpage of Stemcell 675 

Technologies. In addition, the embryoid body method detailed by Stemcell Technologies 676 

was used for the induction of BIN1 WT and KO hiPSCs. Cell numbers and viability were 677 

recorded using a LUNA™ Automated Cell Counter (Logos Biosystems, South Korea).  678 

hiNs generated from ASCL1-transduced hiNPCs (protocol detailed in next section) were 679 

subjected to differentiation for 4 weeks. All differentiations were performed in tissue in 24-680 

well cell imaging plates (0030741005, Eppendorf) culture dishes pre-coated with Poly-L-681 

ornithine (P4957, Sigma-Aldrich) and Mouse Laminin (CC095, Sigma-Aldrich).  682 

  683 

Differentiation protocol for induced hiNPCs  684 

We differentiated neurons from virus-transduced hiNPCs according to an adapted 685 

protocol (Zhang et al., 2013; Yang et al., 2017). Briefly, hiNPCs are first transfected with the 686 
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TTA lentiviral construct and a passage later, the TetO-Ascl1-Puro lentiviral construct was 687 

transduced. These cells are maintained in NPM medium and expanded prior to 688 

differentiation. For differentiation of hiNs, hiNPCs are plated onto PLO/laminin-coated 689 

imaging plates at density 100,000 cells/well in NPM. After 24h, complete BrainPhys medium 690 

(BP) is added 1:1 together with 2 µg/mL doxycycline (Sigma-Aldrich) to induce TetO gene 691 

expression. The following day, 1 µg/mL puromycin (Sigma-Aldrich) was added to start cell 692 

selection. After 2-3 days (depending on the efficiency of antibiotic selection), 50,000 human 693 

cortical astrocytes were added in each well with BrainPhys containing doxycycline. After 24 694 

hours, 2 µM of Ara-C (Cytosine β-D-arabinofuranoside) (Sigma-Aldrich) was added to arrest 695 

the proliferation of astrocytes. Half of the medium in each well was changed biweekly 696 

with fresh BrainPhys medium (StemCell Technologies) containing doxycycline until the 14th 697 

day. After that, the biweekly medium change was performed only with BrainPhys. 698 

Differentiation was allowed to continue for another 2 weeks prior to subjecting the cells to 699 

various experimental manipulations.  700 

Human cortical astrocytes (Catalog # 1800) were sourced from ScienCell Research 701 

Laboratories, CA, USA. Maintenance and proliferation of astrocytes were done as per 702 

specifications mentioned on the datasheet from the provider which is available on their 703 

webpage.  704 

This culture system was characterized using snRNA-seq showing that 70% of cells 705 

(n=3114 from 2 independent culture batches) expressed the pan-neuronal markers SOX11, 706 

SNAP25, DCX and RBFOX3, with 66% of cells co-expressing the glutamatergic neuron marker 707 

SLC17A6, less than 1.5% of cells co-expressing the GABAergic neuron markers DLX1, GAD1 708 

and GAD2, and 5% of cells co-expressing low levels of markers of both neuronal subtypes. 709 

The remaining cells, immature astrocytes (Astro-I), mature astrocytes (Astro-II) and 710 

undifferentiated NPCs, represented about 15%, 8%, 4% of the cells, respectively. The first 711 

two cell populations likely represent two different states of astrocytes added to the 712 

cultures, whereas NPCs are likely cells that failed to reprogram into hiNs despite ASCL1 713 

transduction.  714 

  715 

Culture of Induced Neurons (hiNs) in Microfluidic Devices  716 

Preparation of Microfluidic Devices: Three-compartment microfluidic neuron culture 717 

devices were used in which the presynaptic and postsynaptic chambers are connected to 718 
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the synaptic chamber by respectively long and short micro-channels. Details of the 719 

microfluidic device design and fabrication have been previously described (Kilinc et al, 720 

2020).  721 

The homemade devices were placed individually in Petri dishes for easy handling and 722 

UV sterilized for 30 min before coating for cell adhesion. The primary surface coating 723 

consisted of poly-L-lysine (Sigma-Aldrich) at 20 µg/mL in borate buffer (0.31% boric acid, 724 

0.475% sodium tetraborate, pH 8.5). All coated devices were incubated overnight at 37°C, 725 

5% CO2. After a wash with DPBS, devices were then coated with 20 μg/mL laminin in DPBS 726 

and incubated overnight at 37°C in 5% CO2. The following day, devices were carefully 727 

washed once with DPBS before cell plating.  728 

Cell Culture: In total, 30,000 NPCs resuspended in complete Neural Progenitor 729 

Medium (NPM, Stemcell Technologies) containing 10 µM of Y-27632 ROCK inhibitor were 730 

seeded per device, half at the entrance of the presynaptic somatic chamber and half at the 731 

entrance of the postsynaptic somatic chamber. Microfluidic devices were microscopically 732 

checked at the phase contrast to ensure the cells were correctly flowing into chambers. 733 

After a minimum of 5 minutes to allow the cells to attach, devices were filled with NPM 734 

(containing 10 µM of Y-27632 ROCK Inhibitor). Water was added to the Petri dishes to 735 

prevent media evaporation, and these were then incubated at 37°C in a humidified 5% CO2 736 

incubator. The spontaneous neuronal differentiation of NPCs started 24 hours later, 737 

initiated by half medium change with complete BrainPhys Neuronal Medium. Induced 738 

neuron cultures were maintained for 4 to 6 weeks with half of the medium replaced 739 

biweekly with BrainPhys medium.  740 

For induced neuron culture from NPCs transduced for Ascl1, doxycycline (2 µg/mL) 741 

was added on the first day of half medium change to induce TetO gene expression. The 742 

following day, puromycin (1 µg/mL) was added to start cell selection. Two days after the 743 

puromycin selection, a total of 5,000 human cortical astrocytes (ScienCell Research 744 

Laboratories, CA, USA) were added per device. After 24 hours, Ara-C (2 µM) was added to 745 

stop their proliferation. Half of the medium was changed twice a week with complete 746 

BrainPhys medium + 2 µg/mL doxycycline for 14 days. After that, half medium change was 747 

performed only with BrainPhys medium.   748 

Four microfluidic devices were employed for each experimental condition (BIN1 KO vs 749 

WT both for spontaneous neuronal differentiation and Ascl1 induction) and two 750 
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independent cultures were performed. To assess the time-course effect, neuron cultures 751 

were stopped at 4 and 6 weeks.  752 

  753 

Generation of Cerebral Organoids  754 

Cerebral organoids (3D Cultures) were generated from wild-type, heterozygous and 755 

knockout hiPSCs using a 4-stage protocol (Lancaster et al., 2013). The first step was the 756 

Embryoid Body (EB) Formation Stage, where hiPCSc at 80%-90% confluency were detached 757 

from the Vitronectin XF substrate using Accutase (#AT-104, Innovative Cell Technologies). To 758 

form the EB, 9000 cells were plated per well in a 96-well round-bottom ultra-low 759 

attachment plate containing EB seeding medium (Stem Cell Technologies). After two days, 760 

the EBs were transferred to a 24-well ultra-low attachment plate containing Induction 761 

Medium (Stem Cell Technologies), where each well receives 1-2 EBs. This was the Induction 762 

Stage. Two days later, the EBs were ready for the Expansion Stage. The EBs were embedded 763 

in Matrigel (Corning) and transferred to a 24-well ultra-low adherent plate with Expansion 764 

Medium (Stem Cell Technologies). After three days, the medium was replaced by 765 

Maturation Medium (Stem Cell Technologies) and the plate was placed in an orbital shaker 766 

(100 rpm speed). During this final Maturation Phase, 75% medium change was done on a 767 

biweekly basis. Organoids were allowed to mature for a period of 6.5 months.  768 

  769 

Viral Transductions  770 

Lentiviral constructs were produced by the Vect’UB platform within the TBM Core unit 771 

at University of Bordeaux, Bordeaux, France (CNRS UMS 3427, INSERM US 005). The 772 

lentiviral constructs used were TTA (ID # 571) and TetO-Ascl1-Puro (Addgene, Plasmid # 773 

97329). Lentiviral infections were done in NPCs at P3 or P4. The viral constructs were 774 

transduced at a multiplicity of infection (MOI) of 2.5. In brief, NPCs were plated at a 775 

confluency of 1x106 cells per well of a 6-well plate. After 4 hours of plating the cells, 776 

appropriate volumes of each lentiviral construct were mixed in complete Neural Progenitor 777 

medium and 50 µl of the viral medium mix was then added to each well. We transduced the 778 

TTA construct at first in the NPCs. Following one passage, the TTA-transduced cells were 779 

transduced with the construct for Ascl1. Cells having both viral constructs were then further 780 

expanded for 1 or 2 passages before being used for differentiation into hiNs.  781 
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The iGluSnFR construct was an adeno-associated viral vector (BS11-COG-AAV8) 782 

sourced from Vigene Biosciences, MD, USA. The viral construct was transduced at a MOI of 783 

5,000 at around 10 days of differentiation for the ASCL1-hiNs. Differentiation was allowed to 784 

continue for a duration of 4 weeks prior to imaging.  785 

  786 

Immunocytochemistry and Immunohistochemistry  787 

Bidimensional (2D) cultures: All cells were fixed in 4% (w/v) paraformaldehyde 788 

(Electron Microscopy Sciences, Catalog # 15712) for 10 minutes in the imaging plates. 789 

Following, fixation, cells were washed thrice with PBS 0.1 M. Blocking solution (5% normal 790 

donkey serum + 0.1% Triton X-100 in PBS 0.1 M) was added to fixed cells at room 791 

temperature for 1 hour under shaking conditions. After the blocking step, primary 792 

antibodies were added to cells in the blocking solution and incubated overnight at 4°C. The 793 

following day, cells were washed with PBS 0.1 M thrice for 10 mins. Each. Alexa Fluor®--794 

conjugated secondary antibodies in blocking solution were then incubated with the cells for 795 

2 hours at room temperature under shaking conditions ensuring protection from light. 796 

Subsequently, 3 washes with 0.1 M PBS were done for 10 min each at room temperature 797 

under shaking conditions with protection from light. Hoechst 33258 solution was added 798 

during the second PBS wash. Cells were mounted with Aqua-Poly/Mount (Polysciences, Inc.) 799 

and imaged directly in the cell imaging plates. All images were acquired using an LSM 880 800 

Confocal Scanning Microscope housed at the Imaging Platform of the Pasteur Institute, Lille.  801 

Duolink® Proximity Ligation Assays (PLA) was used to detect endogenous Protein-Protein 802 

Interactions. The following pairs of antibodies were used: anti-BIN1 (rabbit, 182562, abcam) 803 

and anti-Cav1.2 (mouse, 84814, abcam); or anti-BIN1 and anti-Cav1.3 (mouse, 85491, 804 

mouse). Other antibodies used for immunocytochemistry were:  MAP2 (188006 and 805 

188004, Synaptic Systems), Beta III Tubulin (MAB1637, Sigma-Aldrich), GFAP (AB5804, 806 

Millipore; and 173006, Synaptic Systems). All Alexa Fluor®-tagged secondary antibodies 807 

were sourced from Jacskon ImmunoResearch Europe Ltd. 808 

Microfluidic Devices: Cultured induced neurons were fixed in 4% paraformaldehyde in 809 

PBS for 15 min at room temperature, washed three times with PBS, and permeabilized with 810 

0.3% Triton X-100 in PBS for 5 min at room temperature. Cells were blocked in PBS 811 

containing 5% normal donkey serum for 1 h at room temperature before overnight 812 

incubation at 4°C with the following primary antibodies: MAP2 (188006, Synaptic Systems); 813 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.01.18.476601doi: bioRxiv preprint 

155

https://doi.org/10.1101/2022.01.18.476601
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 29

HOMER1 (160004, Synaptic Systems), Synaptophysin (101011, Synaptic Systems), and GFAP 814 

(AB5804, Millipore). Cells were washed twice with PBS and incubated with the following 815 

secondary antibodies for 2h at room temperature: DyLight™ 405 Donkey Anti-Chicken (703-816 

475-155, Jackson ImmunoResearch), Alexa Fluor 594 Donkey Anti-Guinea Pig (706-585-148, 817 

Jackson ImmunoResearch), Alexa Fluor 488 Donkey Anti-Mouse (715-545-151, Jackson 818 

ImmunoResearch) and Alexa Fluor 647 Donkey Anti-Rabbit (711-605-152, Jackson 819 

ImmunoResearch). Cells were rinsed three times with PBS and microfluidic devices were 820 

mounted with 90% glycerol.  821 

Samples were imaged with a LSM 880 confocal microscope with a 63X 1.4 NA 822 

objective. Images were acquired at zoom 2 in z-stacks of 0.5 µm interval. Typically, 6 images 823 

were acquired per device from the synapse chamber near the postsynaptic chamber such 824 

the image contains multiple dendrites. Images were deconvoluted using the Huygens 825 

software (Scientific Volume Imaging, Netherlands).  826 

Cerebral Organoids: Cerebral organoids were fixed in 4% PFA (w/v) for 30 min at 4°C 827 

followed by three washes with PBS 0.1 M. Cerebral organoids were then placed in sucrose 828 

solution (30% w/v) overnight before being embedded in O.C.T (Tissue-Tek). Embedded 829 

tissue was sectioned at 20 μm using a Cryostar NX70 Cryostat (Thermo Scientific) and 830 

mounted slides were stored at −80°C until immunostaining was performed. For 831 

immunostaining, tissue sections were brought to room temperature and then rehydrated 832 

with 3 washes with 0.1 M PBS, each for 5 mins. Slides were then washed once with PBS with 833 

0.2% Triton X-100 for 15 mins. Tissue was blocked using 10% of donkey serum in PBS 0.1 M 834 

for 1 h at room temperature. After blocking, primary antibodies were added to 0.2 % Triton 835 

X-100 and 10% of donkey serum in PBS 0.1 M at appropriate dilutions and incubated 836 

overnight at 4°C. The next day, slides were washed with PBS 0.1 M 3 times for 5 min each 837 

with gentle shaking. Subsequently, slides were incubated with Alexa Fluor®-conjugated 838 

secondary antibodies in 0.2 % Triton X-100 and 10% of donkey serum in PBS 0.1 M for 2 h at 839 

room temperature in the dark. After secondary antibody incubation, slides were washed 3 840 

times with PBS for 5 min with gentle shanking. Nuclei were visualized by incubating the 841 

tissue for 5 min with Hoechst 33258 stain in PBS 0.1 M. Sections were mounted using 842 

aqueous mounting medium (Polysciences). Images were acquired using an LSM 880 843 

Confocal Scanning Microscope in concert with the ZEISS ZEN imaging software housed at the 844 

Imaging Platform of the Pasteur Institute, Lille. Image acquisition was done at 40X for the 845 
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various cellular markers in Fig. 1. The antibodies used were MAP2 (188006, Synaptic 846 

Systems) and GFAP (AB5804, Sigma-Aldrich).   847 

  848 

Quantification of Synaptic Connectivity  849 

Synaptic connectivity was quantified as previously described (Kilinc et al, 2020). Briefly, 850 

images were analyzed with Imaris software (Bitplane, Zürich, Switzerland) by reconstructing 851 

Synaptophysin I and HOMER1 puncta in 3D. The volume and position information of all 852 

puncta were processed using a custom Matlab (MathWorks, Natick, MA) program. This 853 

program assigns each postsynaptic spot to the nearest presynaptic spot (within a distance 854 

threshold of 1hµm) and calculates the number of such assignments for all presynaptic 855 

puncta. 856 

 857 

Immunoblotting  858 

Samples from the 2D cultures or brain organoids were collected in RIPA buffer 859 

containing protease and phosphatase inhibitors (Complete mini, Roche Applied Science) and 860 

sonicated several times at 60%-70% for 10 seconds prior to use for the immunoblotting 861 

analyses. Protein quantification was performed using the BCA protein assay (ThermoFisher 862 

Scientific). 10 μg of protein from extracts were separated in NuPAGE 4-12% Bis-Tris Gel 863 

1.0mm (NP0321BOX, Thermo Scientific) or 3-8% Tri-Acetate gel (EA03755BOX, Thermo 864 

Scientific) and transferred on to nitrocellulose membranes 0.2μm (#1704158, Bio-Rad). 865 

Next, membranes were incubated in milk (5% in Tris-buffered saline with 0.1% Tween-20 866 

(TBST)) or SuperBlock (37536, ThermoFisher Scientific) to block non-specific binding sites for 867 

1 hour at room temperature, followed by several washes with TBST 0.1% or TNT 1x as 868 

washing buffers. Immunoblottings were carried out with primary antibodies overnight at 869 

4°C under shaking condition. The membranes were washed three times in the washing 870 

buffer, followed by incubation with HRP-conjugated secondary antibodies for 2 hours at 871 

room temperature under shaking condition. The membranes were washed three times in 872 

washing buffer, and the immune reactivity was revealed using the ECL chemiluminescence 873 

system (SuperSignal, ThermoScientific) and imaged using the Amersham Imager 600 (GE Life 874 

Sciences). Optical densities of bands were quantified using the Gel Analyzer plugin in Fiji–875 

ImageJ. The primary antibodies used for the immunoblots were as follows: BIN1 876 

(ab182562,Abcam), APP C-terminal (A8717, Sigma-Aldrich), Tau (A002401-2, Agilent) 877 
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Phospho-Tau(Clone: AT8) (MN1020,ThermoFisher Scientific), CaV1.3 (CACNA1D) (ACC-005, 878 

Alomone), CaV2.1 (CACNA1A) (ACC-001, Alomone), CaV2.2 (CACNA1B) (ACC-002, Alomone), 879 

CaV2.3 (CACNA1E) (ACC-006, Alomone), CaV1.2 (CACNA1C) (AGP-001 and ACC-003, 880 

Alomone), blocking peptide for Anti-CaV1.2 (CACNA1C) (BLP-CC003, Alomone) and β-ACTIN 881 

(A1978, Sigma-Aldrich). Secondary antibodies used for the immunoblots were Mouse-HRP 882 

(115-035-003, Jackson ImmunoResearch), Rabbit-HRP (111-035-003, Jackson 883 

ImmunoResearch), and Guinea pig-HRP (106-035-003, Jackson ImmunoResearch). 884 

  885 

Activity-dependent endosytosis assay 886 

ASCL1-hiNs (n=9 cultures from each genotype) were subjected to 30 min of 887 

depolarization with 65 mM KCl or a mock treatment. Cells were then collected and pulled 888 

for endosomal fraction purification using the Minute™ Endosome Isolation and Cell 889 

Fractionation Kit (Invent Biotechnologies). Western blot was performed as described above.  890 

 891 

AlphaLISA measurements  892 

Cell culture media samples for AlphaLISA measurements were collected at the endof 893 

the 3rd and 4th weeks of differentiation of the ASCL1-hiNs. Alpha-LISA kits specific for 894 

human Aβ1–X (AL288C, PerkinElmer) and Aβ1–42 (AL276C, PerkinElmer) were used to 895 

measure the amount of Aβ1–X and Aβ1–42 respectively in culture media. The human Aβ 896 

analyte standard was diluted in the BrainPhys medium. For the assay, 2 µL of cell culture 897 

medium or standard solution was added to an Optiplate-384 microplate (PerkinElmer). 2hµL 898 

of 10X mixture including acceptor beads and biotinylated antibody was then added to the 899 

wells with culture media or standard solution. Following incubation at room temperature 900 

for an hour, 16hµL of 1.25X donor beads was added to respective wells and incubated at 901 

room temperature for 1 hour. Luminescence was measured using an EnVision-Alpha Reader 902 

(PerkinElmer) at 680-nm excitation and 615-nm emission wavelengths.  903 

  904 

Calcium and iGluSnFR Imaging  905 

Calcium imaging was performed in 2D cultures after 4-weeks (Ascl1-induced). Prior to 906 

imaging, the cells were incubated with Oregon Green™ 488 BAPTA-1 (OGB-1) acetoxymethyl 907 

(AM) (ThermoFisher Scientific) for 1 hour. A 2.5 mM stock solution of the calcium-indicator 908 

dye was prepared in Pluronic™ F-127 (20% solution in DMSO) (ThermoFisher Scientific). 1 µL 909 
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of the dye solution was added to 400 µL of fresh BrainPhys medium in each well of a 24-well 910 

cell imaging plate. Existing BrainPhys media from the wells of the plate was removed and 911 

kept aside while the calcium-indicator dye was incubated in fresh BrainPhys medium. After 912 

the 1-hour incubation, the medium which was kept aside was replaced to each well. The 2D 913 

cultures were then ready to be filmed using a Spinning Disk Microscope housed at the 914 

Institut Pasteur de Lille, Lille, France using the MetaMorph imaging software.  915 

For filming the calcium activity, 1000 images were taken using a 20X long-distance 916 

objective, 10 ms exposure time and 200ms intervals. For each well, 5 random fields were 917 

chosen, and the cellular activity was, thus, recorded.  918 

For cells transduced with iGluSnFR, these cells were directly filmed after 4 weeks of 919 

differentiation and 500 images were taken using a 20X long-distance objective, 10 ms 920 

exposure time and 200ms intervals. Up to 8 fields per well were filmed, each field 921 

containing at least one fluorescent transduced cell along with its processes.  922 

  923 

Analyses of Calcium Transients  924 

All live recordings of neuronal calcium transients were first converted into .avi format 925 

after background subtraction using the FIJI software. Following these, the videos were 926 

subsequently opened using the free software for data analyses of calcium imaging, 927 

CALciumIMagingAnalyzer (CALIMA) made available online by Fer Radstake (Eindhoven 928 

University of Technology, The Netherlands). Each video recording of a field of cells was first 929 

downscaled to 2X in terms of size with a 10X zoom and was checked for the frame average 930 

mode. Moreover, in this first detection stage, pre-set filter parameters were adjusted and 931 

applied to enable the detection of the maximum number of fluorescent cells in each field. In 932 

the analysis tab, detection of the average activity was checked and for pre-processing, a 933 

median of 3 was applied. All cells within the pre-set filter parameters are detected as 934 

regions of interest (ROIs) in the detection stage. Cell activity from all detected ROIs is then 935 

recorded. However, in the subsequent analysis stage, only cells showing spiking frequencies 936 

with a standard deviation of at least 2 or more were taken into consideration. Data in the 937 

form of detection spikes and the correlation (peak) are extracted and exported as CSV files.  938 

 939 

Electrophysiological recordings in 2D cultures and cerebral organoids  940 
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ASCL1-hiNs were cultured in the aforementioned microfluidic devices bound to multi-941 

electrode arrays (256MEA100/30iR-ITO, Multi-Channel Systems, Germany). Extracellular 942 

action potentials were recorded in 5 different cultures for both genotypes at 2, 3, 4 and 6 943 

weeks of differentiation using the MEA2100-256-System (Multi-Channel Systems). Before 944 

recordings, MEAs were let stabilize for 5 min on the headstage to reduce artifacts due to 945 

medium movement. Signals were recorded for 1 min, at 40 kHz sampling rate, using Multi 946 

Channel Experimenter 2.16.0 software (Multi-Channel Systems).  Electrical activity in 947 

cerebral organoids was recorded using 256-6wellMEA200/30iR-ITO (Multi-Channel Systems, 948 

Germany). Briefly, 5-6-month-old cerebral organoids were mounted onto MEAs and kept for 949 

2 h in complete Brainphys medium. Then, MEAs were placed on the headstage and let 950 

stabilize for 5 min before recordings. Signals were recorded for 5 min, at 10 kHz sampling 951 

rate using Multi-Channel Experimenter 2.16.0. For rescue experiments using a calcium 952 

channel blocker, ASCL1-hiNs were cultured MEA 96-well plates (CytoView MEA 96, Axion 953 

Biosystems, USA). Extracellular action potentials were recorded in 3 independent cultures 954 

for either genotype in the presence of 50nM nifedipine (Tocris Bioscience) or vehicle using 955 

the MaestroPro (Axion Biosystems, Inc, USA). Before recordings, MEAs were let stabilize for 956 

5 min on the MaestroPro at 37
o
C and 5% CO2. Signals were recorded for 3 min, at 12.5 kHz 957 

sampling rate, using AxIS Navigator software (Axion Biosystems). 958 

Spikes were detected using a fixed amplitude threshold of 5.5 and 4.5 standard 959 

deviations (for the 2D and 3D cultures, respectively) of the high-pass filtered (>300 Hz) 960 

signal for positive- and negative-going signals. The detection included a dead time of 3 ms to 961 

account for the refractory period of action potentials. Quantification of the number of 962 

detected spikes (MUAs) and spike bursts (defined as at least 5 spikes within 50 ms) was 963 

performed using Multi-Channel Analyzer 2.16.0 software (Multi-Channel Systems).   964 

 965 

Spike sorting and temporal structure of spontaneous activity   966 

Channels containing detected waveforms were manually processed offline for spike 967 

waveform separation and classification using Offline Sorter v3 (Plexon, USA). Briefly, we 968 

applied principal component analysis (PCA) to cluster spike waveforms of similar 969 

morphologies. Using this approach, we identified from 2 to 10 well-isolated units per 970 

channel, and therefore, we considered this single-unit activity (SUA). For each SUA, we 971 

computed the average firing rate, the signal-to-noise ratio, the peak-to-trough amplitude 972 
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and duration, the average power (square amplitude of the average waveform), the mode of 973 

the interspike interval distribution, and their firing patterns. It has been demonstrated that 974 

dissociated neuronal cultures can develop complex discharge structures (Wagenaar, 2006). 975 

Here, we considered burst activity if the SUA presents periods of high-frequency discharges 976 

interspersed by regular or no discharges at all.  Operationally, a burst must have at least 3 977 

spikes within 100 ms and 200 ms intervals, for the interval between the first and the second, 978 

and the second and the third discharge, respectively. After the third spike, the maximal 979 

interval to consider a discharge part of the burst was 200 ms. Thus, we computed the SUA 980 

that presented bursts, the number of bursts (i.e., the burst frequency), the average burst 981 

duration, the number of spikes within each burst, the average burst frequency, and the 982 

inter-burst interval. 983 

 Two complementary approaches investigated the temporal structures of spike trains. 984 

In the first one, we computed the array-wide spike detection rate (ASDR), which is the 985 

number of spikes detected per unit of time, summed over all electrodes in the array. This 986 

method is commonly used in the literature to demonstrate synchronous activity (aka, 987 

bursts) in MUA data (Wagenaar 2006). The second approach uses the autocorrelation 988 

function (i.e., the probability of finding two spikes at a given time interval) to calculate the 989 

oscillation score and the oscillation period of every single unit (Muresan 2008:1333, J 990 

Neurophysiol). Briefly, the oscillation score was calculated as the averaged absolute 991 

magnitude difference between the positive and negative peaks of the smoothed 992 

autocorrelation function (bin size of 200 ms). The oscillation period was calculated as the 993 

averaged time interval of the positive peaks of the autocorrelation function. 994 

   995 

snRNA-seq Library Preparation  996 

Nuclei isolation and Hash-tagging with oligonucleotides steps were realized on ice with 997 

pre-cold buffers and centrifugations at 4°C. 6.5-month-old BIN1 WT, HET, and KO organoids 998 

were processed as previously (Lambert et al., 2022). 4-week-old cultured ASCL1-induced 999 

BIN1 WT and KO 2D cultures were washed in the imaging plate wells with 500 µL of 1000 

Deionized Phosphate Buffer Saline 1X (DPBS, GIBCO™, Fisher Scientific 11590476). Cells 1001 

were resuspended with wide bore tips in 500 μL Lysis Buffer (Tris-HCL 10mM, NaCl 10mM, 1002 

MgCl2 3mM, Tween-20 0,1%, Nonidet P40 Substitute 0,1%, Digitonin 0,01%, BSA 1%, 1003 

Invitrogen™ RNAseout™ recombinant ribonuclease inhibitor 0,04 U/μL). Multiple 1004 
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mechanical resuspensions in this buffer were performed for a total lysis time of 15 mins., 1005 

500 μL of washing buffer was added (Tris-HCL 10mM, NaCl 10 mM, MgCl2 3 mM, Tween-20 1006 

0.1%, BSA 1%, Invitrogen™ RNAseout™ recombinant ribonuclease inhibitor 0,04 U/μL) and 1007 

the lysis suspension was centrifuged 8 mins. at 500 g (used for all following centrifugation 1008 

steps). Nuclei pellets were washed tree times with one filtration step by MACS pre-1009 

separation filter 20μm (Miltenyi Biotec). Nuclei pellets were resuspended in 100 μL of 1010 

staining buffer (DPBS BSA 2%, Tween-20 0.01%), 10 μL of Fc blocking reagent 1011 

HumanTruStainFc™ (422302, Biolegend) and incubated 5 min at 4°C. 1μl of antibody was 1012 

added (Total-Seq™-A0453 anti-Vertebrate Nuclear Hashtag 3 MAb414 for the WT and Total-1013 

Seq™-A0454 anti-Vertebrate Nuclear Hashtag 4 MAb414 for the KO, 97286 and 97287 1014 

respectively, Biolegend) and incubated 15 mins. at 4°C. Nuclei pellets were washed three 1015 

times in staining buffer with one filtration step by MACS pre-separation filter 20 μm 1016 

(Miltenyi Biotec) to a final resuspension in 300 μL of staining buffer for Malassez cell 1017 

counting with Trypan blue counterstaining (Trypan Blue solution, 11538886, 1018 

Fisherscientific). Isolated nuclei were loaded on a Chromium 10X genomics controller 1019 

following the manufacturer protocol using the chromium single-cell v3 chemistry and single 1020 

indexing and the adapted protocol by Biolegend for the HTO library preparation. The 1021 

resulting libraries were pooled at equimolar proportions with a 9 for 1 ratio for Gene 1022 

expression library and HTO library respectively. Finally, the pool was sequenced using 100pb 1023 

paired-end reads on NOVAseq 6000 system following the manufacturer recommendations 1024 

(Illumina).  1025 

 1026 

snRNA-seq Dataset Preprocessing  1027 

Unique Molecular Index (UMI) Count Matrices for gene expression and for Hash Tag 1028 

Oligonucleotide (HTO) libraries were generated using the CellRanger count (Feature 1029 

Barcode) pipeline. Reads were aligned on the GRCh38-3.0.0 transcriptome reference (10x 1030 

Genomics). Filtering for low quality cells according to the number of RNA, genes detected, 1031 

and percentage of mitochondrial RNA was performed. For HTO sample, the HTO matrix was 1032 

normalized using centered log-ratio (CLR) transformation and cells were assigned back to 1033 

their sample of origin using HTODemux function of the Seurat R Package (v4)[10]. Then, 1034 

normalizations of the gene expression matrix for cellular sequencing depth, mitochondrial 1035 
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percentage and cell cycle phases using the variance stabilizing transformation (vst) based 1036 

Seurat:SCTransform function were performed.  1037 

  1038 

snRNA-seq datasets integration and annotation  1039 

To integrate the datasets from independent experiments, the harmony R package 1040 

(https://github.com/immunogenomics/harmony) was used. In order to integrate the 1041 

datasets, the SCTransform normalized matrices was merged and PCA was performed using 1042 

Seurat::RunPCA default parameter. The 50 principal components (dimensions) of the PCA 1043 

were corrected for batch effect using harmony::RunHarmony function. Then, the 30 first 1044 

batch corrected dimensions were used as input for graph-based cell clustering and 1045 

visualization tool.  Seurat::FindNeighbors using default parameters and Seurat::FindClusters 1046 

function using the Louvain algorithm were used to cluster cells according to their batch 1047 

corrected transcriptomes similarities. To visualize the cells similarities in a 2-dimension 1048 

space, the Seurat::RunUMAP function using default parameter was used. Cell clusters were 1049 

then annotated based on cell type specific gene expression markers.  1050 

  1051 

Differential gene expression and GO enrichment analyses  1052 

Gene expression within each main cell type was compared between conditions of 1053 

interest using Wilcoxon test on the SCTransform normalized gene expression matrix. GO 1054 

enrichment analysis on the differentially expressed genes was performed using the gost 1055 

function of the gprofiler2 R package (CRAN).  1056 

  1057 

Activity-related genes (ARGs) signature enrichment analysis at single cell resolution  1058 

To study enrichment for activity-related genes (ARGs) signature across cerebral 1059 

organoid cells, the CellID R package (https://github.com/RausellLab/CelliD) was used. ARGs 1060 

obtained from Tyssowski et al. (2018) and Hravtin et al. (2018) (supplementary Table 7), 1061 

were translated to the corresponding human gene name with the help of the biomaRt 1062 

package using the respective Ensembl references. Then, the CellID::RunMCA was used to 1063 

extract cell-specific gene signature and hypergeometric test was performed to test 1064 

enrichment for ARGs in these cell signatures. To test the differential proportion of ARGs 1065 

enriched cells in BIN1 deleted organoid compared to WT organoid, chi-squared test was 1066 

performed.  1067 
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  1068 

Comparative analysis with specific DEGs in AD brains  1069 

To compare the transcriptomic change observed in BIN1 deleted cerebral organoid 1070 

with those observed in AD brain, datasets from the work of Leng et al. (ref) and Morabito et 1071 

al. (ref) were taken as 2 independent references. The raw gene expression matrix was 1072 

normalized using Seurat::SCTransform and differential expression analysis was performed 1073 

within each neuronal cell type using Wilcoxon test as used for our organoid dataset. AD 1074 

related DEGs, thus, obtained were compared with our BIN1 related organoid DEGs in every 1075 

cell type. To this end, the enrichment for AD-related DEGs in BIN1-related DEGs was tested 1076 

using hypergeometric test. The background for this test was defined as all genes detected in 1077 

both datasets. The p-value of this test was used as metrics to compare the significance of 1078 

the gene overlap between neuronal cell types. 1079 

 1080 

Statistical analysis 1081 

Statistical analysis was performed using GraphPad Prism version 8.0.0 (GraphPad 1082 

Software, San Diego, California USA, www.graphpad.com) and R 4.2.0 (R Core Team, 2022, 1083 

https://cran.r-project.org/bin/windows/base/old/4.2.0/). Bar plots show mean ± SD and 1084 

individual values. Box plots show 1-99 percentile. Statistical tests and p values are indicated 1085 

in figure legends. 1086 

 1087 
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II.2. Conclusion 

BIN1 is mainly express in brain in oligodendrocytes, glutamatergic neurons, microglia and 

GABAergic neurons543. Past studies in rat hippocampal neurons, in mice, or drosophila have shown by 

over-expressing specific human isoforms, a potential role in endosomal trafficking, neurons excitability 

and long-term memory, interacting with Tau in both cellular and mouse models544–546. Here we showed 

in human cerebral organoid and bidimensional neuronal models leveraging single cell transcriptomics 

assay that the main transcriptional alteration of BIN1 deletion targets glutamatergic neurons and are 

enriched for genes involved in synapse organization and calcium channel related activity. These results 

support that the main activity of BIN1 occur in this cell type and highlight its putative role in regulating 

calcium channel related synaptic activity.  

Neuronal calcium homeostasis is disturb in aging and is an important early cellular defects in 

AD, leading to neuronal hyperexcitability, defective long term memory, and ultimately neuronal cell 

death603,470,477,478,604,605. Here, we found that BIN1 deletion was sufficient to alter glutamatergic neurons 

transcriptional activity similarly than in AD brain and to drive neuronal hyperexcitability and neural 

network synchronization dysfunction. We also found that BIN1 deletion promotes in these neurons a 

gene expression signature of sustained electrical activity, suggesting long term impact on neurons 

function including long term memory. We then further validated BIN1 role in calcium homeostasis 

observing increase in calcium spike duration in BIN1 deleted neurons, as observed in aging606,607. We 

found then that the role of BIN1 in calcium homeostasis could pass through its ability to regulate 

membrane expression of the L-Type voltage gated calcium channel (LVGCC) Cav1.2, because found 

interacting direclty with this channel, and because BIN1 KO neurons have an increase Cav1.2 channel 

expression while reduced internalization capacity in response to stimulation. Cav1.2 play a key role in 

neurons excitability and long term memory 603, and its activity-dependant internalization allow calcium 

homeostasis and regulation of neuronal hyperexcitability608. Then, dysregulation of its expression at 

post-synaptic membrane could explained neuronal hyperexcitability observed in BIN1 KO neurons. 

Interestingly, expression of  LVGCC increases in the aging brain and correlate with a neuronal 

hyperactivity607,608. Then, BIN1 role in AD pathogeneisis could pass through its ability to regulate 

neuronal excitability and synchronization through the LVGCC Cav1.2 internalization.  

Recently, Canter et al have shown that pharmacogenetic inhibition of neuronal hyper-

excitability reduced AD pathogenesis in mouse including Abeta deposition609. Here, we found that 

calcium channel blocker nifedipine, a specific antagonist of Cav1.2, was able to partially rescue the 

neuronal hyperactivity mediated by BIN1 deletion, reducing disorganized spikes, and permitting better 

neuronal activity synchronization. Together, these results highlight the putative cellular mechanisms 

associating the BIN1 genetics risk with AD pathogenesis and suggests that blocking Cav1.2 through 
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pharmacological inhibitor could be a good strategy to fight against the neuronal hyperexcitability 

mediated by BIN1 defects and/or found in aging.  
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GENERAL DISCUSSION  

I. Single-cell genomics to identify putative early molecular and cellular 

mechanism of ACD development 

The use of single-cell genomics in our two models allowed to decipher the influence of 

heterogeneity on early molecular and cellular disease mechanisms.  

In both models, we were able to identify known cellular subpopulation using cell type specific 

markers, but also to redefine or highlight new heterogeneity within the studied tissues. In HSPCs, we 

found the main subpopulations, from LT-HSC to lineage-restricted progenitors but also confirm the 

continuous landscape of the hematopoietic differentiation. To note, even if the clustering algorithm 

generate discrete subpopulation within HSPCs, the limits between each subpopulation are in fact not 

clear and rather represent an arbitrary choice to facilitate further studies at subpopulation level. These 

results support the new model of continuous hematopoietic differentiation build through previous 

scRNA-seq studies but also raise the intrinsic subjectivity of defining subpopulation in the context of 

differentiation. This implies that comparing different scRNA-seq studies require first to integrate data 

and/or to have a same reference. Tools have been designed to facilitate this task, notably used a same 

scRNA-seq dataset reference to annotate cells from different studies or to integrate both in the same 

reducted dimensional space182,189. Same conclusions can be made with my second model using iPSC 

derived neural tissues. We identified known brain related cell types but also highlighted the continuous 

neural progenitor cells (NPCs) differentiation.  

Furthermore, scRNA-seq has allowed us to identify new cellular heterogeneity within tissue, 

notably in HSCs, were transcriptomically distinct cell subpopulations were identified, including one, 

having STAT1 and IRF1 markers, both known to promote megakaryopoiesis610 (See supplemental 

Figure S2 of the first article). These results support a priming of the HSC subpopulation toward 

megakaryocytes differentiation concordant with previous findings416,611. To validate the relevance of 

this gain in resolution, new sorting strategies could be implemented to isolate these different HSC 

clusters and study their putative activities or differentiation abilities. This intra-HSC heterogeneity can 

also rely on the transcriptional plasticity of HSC allowing different cell’s fate417,612,613.  

Critically, the single-cell genomics analysis has allowed to decipher in our two models the cell 

type specific effect of disease epigenetics or genetics factor which would not have been discernable 

with classical bulk genomics assay. Regarding the first model, we highlighted the HSC specific 

epigenetics and transcriptional programming associated with excessive fetal growth and highlighted a 

decrease ability to regulate their activation or response to stimulation. In the second model, we found 
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that glutamatergic neurons were particularly affected by deletion of AD risk gene BIN1, with 

dysregulation of calcium related signaling and neuronal excitability.  This is a new level of unsupervised 

discovery allowed by single-cell genomics. More than the unsupervised identification of molecular 

mechanisms involved in a disease similarly to bulk genomics, single cell genomics allow also the 

unsupervised identification of the cell types involved.  

The cell resolution brings a new level of biological observations. It increases the number of 

individual biological observation enabling the study of gene co-expression across cells to identify 

associated biological module or molecular pathway. In the first model, we used SCENIC tools to infer 

the TFs and related gene regulatory network (GRN) affected by the epigenetics programming, 

highlighting the EGR1 and KLF2 related GRN being altered in HSC. This GRN inference is based on 

correlation, so interpretation of causality needs some caution. I used different strategy to ensure the 

relevance of this GRN, first integrating co-expression analysis with the chromatin information. Second 

with single-cell multiome ATAC+Gene expression allowing to correlate accessibility of an open-

chromatin region containing a particular TF motif with neighbor gene expression. This multi strategy 

has allowed us to validate the relevance of the infered TF regulations but also to filter out non-robust 

regulatory link notably for KLF4 regulon identified with SCENIC, which was not validated based on the 

single-cell multiome analysis. New tools have emerged to leverage the single-cell multiome data, 

notably SCENIC+195 which corrects putative bias of the previous version of SCENIC. It uses co-accessible 

cell type specific genomics region as candidate enhancer region to identify TF motif and subsequent 

GRN inference. Still, to validate the GRN inference, in vitro perturbation experiments are needed. Here, 

I used a gene silencing method to downregulate expression of TFs and see consequences on predicted 

downstream target genes. I was able to validate influence of KLF2 on downstream target genes. 

Nevertheless, such validation is still limited by the ability of cells to be transfected, the availability of 

efficient siRNAs and by the stress induced by the transfection method. To prevent putative siRNAs 

related limitations, others methods could be used notably CRISPR based knock out or silencing of 

candidate genes, associated with scRNA-seq (an approach called perturb-seq134). In the second model, 

rather than using a TF oriented approaches; we leveraged the cellular resolution to identify cell specific 

transcriptomic signature using CellID614 and highlighted that BIN1 deletion leads to an increased 

proportion of glutamatergic neurons enriched for genes signature of sustained neuronal electrical 

activity, bringing functional insights on the BIN1 role in neuronal activity regulation. 

174



GENERAL DISCUSSION 

 

175 
 

II. Single-cell genomics to decipher influence of DNA methylation alterations 

on gene expression and cellular plasticity. 

Single-cell genomics helped us to decipher cell specific influence of methylation on gene 

expression. Indeed, we demonstrated the cell type specific correlation between DNA methylation and 

gene expression changes confirming the importance to study epigenetics mechanism at cellular 

resolution. Role of DNA methylation in regulating transcription factors occupancy and subsequent 

gene expression has already been demonstrated in the context of NRF1 TF binding615, and also recently 

in the context of hematopoiesis393. However, transcriptional response to DNA methylation still appears 

context specific411. Then, to really confirm the causal role of DNA methylation in regulating gene 

expression, it would be interesting to mimic the DNA methylation changes observed in cells exposed 

to excessive fetal growth in normally exposed cells. To do that, one interesting approach would be to 

exposed HSPCs to LGA related condition like high glucose, high IGF1 or high Insulin, with or without 

genetic deletion of DNMT3A, the de novo DNA methylation writer active in HSC616. This manipulation 

will allow us to test if LGA related condition induce stable epigenetics and transcriptomics changes as 

for HSPCs from LGA neonates (i) and if the deletion of DNMT3A prevent these changes(ii), which would 

confirm the epigenetics remodeling and impact on gene expression. Another approach could be to 

specifically change the DNA methylation of some key LGA affected regions using epigenome editing 

methods like dCas9-Dnmt3a allowing targeted de novo DNA methylation617 and assess the impact on 

chromatin accessibility and gene expression. 

We also linked the epigenetic programming with functional alteration of HSC, most specifically 

with differentiation ability/cellular plasticity. We found that DNA hypermethylation targets expression 

of genes (mostly of the EGR1/KLF2 regulatory network) regulating cell growth and/or HSC entry in 

proliferation/differentiation. The critical role of DNA methylation in regulating HSC differentiation has 

been recently confirmed in mice models393. To confirm the impact of LGA-related DNA methylation 

change on HSC differentiation, scRNA-seq and in vitro or in vivo differentiation/expansion assay can be 

performed on LGA-related cellular models +/-DNMT3A exposed in previous paragraph. Such alteration 

of HSC differentiation occurs naturally in aging notably through the accumulation of somatic mutation 

and epigenetics alterations which lead to clonal expansion of defective HSC394. These alterations are 

associated with inflammaging and ACD risk, notably CVD,  and recent studies have confirmed direct 

role of such defective hematopoiesis on ACD development, further highlighting the potential role of 

LGA associated hematopoiesis alteration in ACD risk54,56,58,398. To really challenge this hypothesis, we 

could conduct an experiment with (immunodeficient) animal model transplanted for LGA-exposed or 

control HSC, and follow metabolic status in order to assess ACD risk.  

175



GENERAL DISCUSSION 

 

176 
 

An important finding is that the transcriptomics and functional changes do not seems detectable 

without added environmental challenges. It is still interesting to note that the chromatin accessibility 

changes observed in LGA samples are not dependent of future exposure. Indeed, chromatin 

accessibility was assessed thanks to single nucleus ATAC-seq that was independent of scRNA-seq assay 

and not require sustained exposure of cells in non-physiological environment. This consideration 

suggests that the decreased chromatin accessibility, as well as the increased DNA methylation are 

stably altered in LGA, but the transcriptional effect of such epigenetics change occurs only in 

challenging/stimulating condition. While this environmental challenge was not physiological, 

equivalent cellular response was observed using cytokines promoting HSC activation. The environment 

dependent functional alterations is rising interesting considerations. First, it highlights the importance 

of later environmental exposition in disease onset. Second, it reinforce the need of care when 

interpreting data as it can be directly impacted by the protocol used to measure them. The dependency 

of the measured biological element to the measurement/monitor echoes the fundamental problem of 

the measure in physics but is often neglected in biology and should probably be better considered. 

An important remaining question is if the epigenetics programming could be reverse in life. To 

answer this question, experiments on animal model of excessive fetal growth or transplanted for HSC 

exposed to LGA-like conditions can be performed with assessment of the epigenetics landscape of HSC 

at different time points according to different diets or medications. Human longitudinal study could 

also be performed to assess if LGA HSC epigenetics alteration remain in time but the 

difficulties/invasiveness to isolate HSCs from bone marrow will certainly ask derivative strategy to 

follow these epigenetics biomarkers. Use of peripheral blood cells as a proxy of HSPC to assess such 

epigenetics alteration could be evaluated.  

Finally, a parallel question is the relevance of such epigenetics programming in others stem cells 

compartment, notably mesenchymal stem cells (MSCs). MSCs are mainly located in bone marrow but 

can be found in nearly all tissues and give rise to numerous cells of the body notably adipocytes which 

are key players in the context of obesity and related ACD. To decipher if these stem cells are also 

epigenetically altered in LGA, MSCs can be isolated from umbilical cord618 and have also the advantage 

to be easily isolable after birth from diverse tissue including blood, dermis and dental pulp619, 

facilitating longitudinal studies.  
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III.  Single-cell genomics to understand impact of genetics risk in 

heterogeneous and difficult to access tissue 

One of the main contribution of single-cell genomics in the AD related study was the ability to 

decipher cellular and molecular mechanisms in heterogeneous and not accessible tissue like the brain. 

Indeed, before such assay, study of cellular mechanisms in brain models was restricted to cell imaging 

using immunophenotypic markers or electrochemical measurements, or cell subpopulation sorting 

using FACS but this required predefined hypothesis and cellular targets as well as consequent 

experimental procedures. Here, we were able to unsupervisely assess influence of an AD risk gene in 

several brain cell types and biological processes in one assay. Still, some challenges remain. First, our 

cellular models (bidimensional neuronal culture and tridimensional cerebral organoid) were composed 

only of neural progenitor cells-derived brain cell types, which excludes notably microglia, a cell type 

expressing BIN1 and known to play an important role in AD neuro-inflammation. Then, to decipher 

BIN1 role in microglia, it would be interesting to add microglia in our cellular models. To do so, it is 

possible to reprogrammed iPSC into hematopoetic progenitors and differentiate them into microglia67. 

Another possibility would be to use a conditional model of BIN1 deletion in mice allowing specific loss 

of function of BIN1 in microglia. Second, even if this study has highlighted BIN1 role in regulating 

calcium signaling, it cannot confirmed the influence of the AD risk variants on BIN1. Indeed, the BIN1 

related risk variants do not lead to BIN1 deletion because they are not located in coding region. Some 

cues indicate that these variants could reduce expression of BIN1 in neurons550, however little is known 

about the influence of these variants on gene expression regulation. To decipher the real effect of 

genetics variants on AD, several strategies could be used: first, assess the impact of AD risk haplotype 

on brain model using iPSC from careers of theses AD risk variants. It will enable to assess the impact of 

the whole haplotype associated with AD risk variants on  these cells. However, it could not decipher 

the influence of specific variants. The second strategy could be to genetically modified control iPSC by 

adding the AD specific risk genetics variant to see if the variant alone can trigger AD related effect. 

Such studies have been led for APOE risk variants and in this case it appeared that the influence of such 

genetics risk was dependant of the whole haplotype67, highlighting the importance of the risk variant 

interactions with individual-specific (epi)genetics background. 
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